aboutsummaryrefslogtreecommitdiff
path: root/qemu-kvm.c
blob: 9ca8da462378cb266730e27917111a09e9d857aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/*
 * qemu/kvm integration
 *
 * Copyright (C) 2006-2008 Qumranet Technologies
 *
 * Licensed under the terms of the GNU GPL version 2 or higher.
 */
#include "config.h"
#include "config-host.h"

int kvm_allowed = 1;
int kvm_irqchip = 1;
int kvm_pit = 1;

#include <assert.h>
#include <string.h>
#include "hw/hw.h"
#include "sysemu.h"
#include "qemu-common.h"
#include "console.h"
#include "block.h"
#include "compatfd.h"

#include "qemu-kvm.h"
#include <libkvm.h>
#include <pthread.h>
#include <sys/utsname.h>
#include <sys/syscall.h>
#include <sys/mman.h>

#define false 0
#define true 1

extern void perror(const char *s);

kvm_context_t kvm_context;

extern int smp_cpus;

pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
__thread struct CPUState *current_env;

static int qemu_system_ready;

#define SIG_IPI (SIGRTMIN+4)

pthread_t io_thread;
static int io_thread_fd = -1;
static int io_thread_sigfd = -1;

static int kvm_debug_stop_requested;

/* The list of ioperm_data */
static LIST_HEAD(, ioperm_data) ioperm_head;

static inline unsigned long kvm_get_thread_id(void)
{
    return syscall(SYS_gettid);
}

static void qemu_cond_wait(pthread_cond_t *cond)
{
    CPUState *env = cpu_single_env;
    static const struct timespec ts = {
        .tv_sec = 0,
        .tv_nsec = 100000,
    };

    pthread_cond_timedwait(cond, &qemu_mutex, &ts);
    cpu_single_env = env;
}

static void sig_ipi_handler(int n)
{
}

static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
    struct qemu_work_item wi;

    if (env == current_env) {
        func(data);
        return;
    }

    wi.func = func;
    wi.data = data;
    if (!env->kvm_cpu_state.queued_work_first)
        env->kvm_cpu_state.queued_work_first = &wi;
    else
        env->kvm_cpu_state.queued_work_last->next = &wi;
    env->kvm_cpu_state.queued_work_last = &wi;
    wi.next = NULL;
    wi.done = false;

    pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
    while (!wi.done)
        qemu_cond_wait(&qemu_work_cond);
}

static void inject_interrupt(void *data)
{
    cpu_interrupt(current_env, (int)data);
}

void kvm_inject_interrupt(CPUState *env, int mask)
{
    on_vcpu(env, inject_interrupt, (void *)mask);
}

void kvm_update_interrupt_request(CPUState *env)
{
    int signal = 0;

    if (env) {
        if (!current_env || !current_env->kvm_cpu_state.created)
            signal = 1;
        /*
         * Testing for created here is really redundant
         */
        if (current_env && current_env->kvm_cpu_state.created &&
            env != current_env && !env->kvm_cpu_state.signalled)
            signal = 1;

        if (signal) {
            env->kvm_cpu_state.signalled = 1;
            if (env->kvm_cpu_state.thread)
                pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
        }
    }
}

void kvm_update_after_sipi(CPUState *env)
{
    env->kvm_cpu_state.sipi_needed = 1;
    kvm_update_interrupt_request(env);
}

void kvm_apic_init(CPUState *env)
{
    if (env->cpu_index != 0)
	env->kvm_cpu_state.init = 1;
    kvm_update_interrupt_request(env);
}

#include <signal.h>

static int try_push_interrupts(void *opaque)
{
    return kvm_arch_try_push_interrupts(opaque);
}

static void push_nmi(void *opaque)
{
    kvm_arch_push_nmi(opaque);
}

static void post_kvm_run(void *opaque, void *data)
{
    CPUState *env = (CPUState *)data;

    pthread_mutex_lock(&qemu_mutex);
    kvm_arch_post_kvm_run(opaque, env);
}

static int pre_kvm_run(void *opaque, void *data)
{
    CPUState *env = (CPUState *)data;

    kvm_arch_pre_kvm_run(opaque, env);

    if (env->interrupt_request & CPU_INTERRUPT_EXIT)
	return 1;
    pthread_mutex_unlock(&qemu_mutex);
    return 0;
}

static void kvm_do_load_registers(void *_env)
{
    CPUState *env = _env;

    kvm_arch_load_regs(env);
}

void kvm_load_registers(CPUState *env)
{
    if (kvm_enabled() && qemu_system_ready)
        on_vcpu(env, kvm_do_load_registers, env);
}

static void kvm_do_save_registers(void *_env)
{
    CPUState *env = _env;

    kvm_arch_save_regs(env);
}

void kvm_save_registers(CPUState *env)
{
    if (kvm_enabled())
        on_vcpu(env, kvm_do_save_registers, env);
}

int kvm_cpu_exec(CPUState *env)
{
    int r;

    r = kvm_run(kvm_context, env->cpu_index, env);
    if (r < 0) {
        printf("kvm_run returned %d\n", r);
        exit(1);
    }

    return 0;
}

extern int vm_running;

static int has_work(CPUState *env)
{
    if (!vm_running || (env && env->kvm_cpu_state.stopped))
	return 0;
    if (!env->halted)
	return 1;
    return kvm_arch_has_work(env);
}

static void flush_queued_work(CPUState *env)
{
    struct qemu_work_item *wi;

    if (!env->kvm_cpu_state.queued_work_first)
        return;

    while ((wi = env->kvm_cpu_state.queued_work_first)) {
        env->kvm_cpu_state.queued_work_first = wi->next;
        wi->func(wi->data);
        wi->done = true;
    }
    env->kvm_cpu_state.queued_work_last = NULL;
    pthread_cond_broadcast(&qemu_work_cond);
}

static void kvm_main_loop_wait(CPUState *env, int timeout)
{
    struct timespec ts;
    int r, e;
    siginfo_t siginfo;
    sigset_t waitset;

    pthread_mutex_unlock(&qemu_mutex);

    ts.tv_sec = timeout / 1000;
    ts.tv_nsec = (timeout % 1000) * 1000000;
    sigemptyset(&waitset);
    sigaddset(&waitset, SIG_IPI);

    r = sigtimedwait(&waitset, &siginfo, &ts);
    e = errno;

    pthread_mutex_lock(&qemu_mutex);

    if (r == -1 && !(e == EAGAIN || e == EINTR)) {
	printf("sigtimedwait: %s\n", strerror(e));
	exit(1);
    }

    cpu_single_env = env;
    flush_queued_work(env);

    if (env->kvm_cpu_state.stop) {
	env->kvm_cpu_state.stop = 0;
	env->kvm_cpu_state.stopped = 1;
	pthread_cond_signal(&qemu_pause_cond);
    }

    env->kvm_cpu_state.signalled = 0;
}

static int all_threads_paused(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        if (penv->kvm_cpu_state.stop)
            return 0;
        penv = (CPUState *)penv->next_cpu;
    }

    return 1;
}

static void pause_all_threads(void)
{
    CPUState *penv = first_cpu;

    assert(!cpu_single_env);

    while (penv) {
        penv->kvm_cpu_state.stop = 1;
        pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
        penv = (CPUState *)penv->next_cpu;
    }

    while (!all_threads_paused())
	qemu_cond_wait(&qemu_pause_cond);
}

static void resume_all_threads(void)
{
    CPUState *penv = first_cpu;

    assert(!cpu_single_env);

    while (penv) {
        penv->kvm_cpu_state.stop = 0;
        penv->kvm_cpu_state.stopped = 0;
        pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
        penv = (CPUState *)penv->next_cpu;
    }
}

static void kvm_vm_state_change_handler(void *context, int running)
{
    if (running)
	resume_all_threads();
    else
	pause_all_threads();
}

static void update_regs_for_sipi(CPUState *env)
{
    kvm_arch_update_regs_for_sipi(env);
    env->kvm_cpu_state.sipi_needed = 0;
}

static void update_regs_for_init(CPUState *env)
{
#ifdef TARGET_I386
    SegmentCache cs = env->segs[R_CS];
#endif

    cpu_reset(env);

#ifdef TARGET_I386
    /* restore SIPI vector */
    if(env->kvm_cpu_state.sipi_needed)
        env->segs[R_CS] = cs;
#endif

    env->kvm_cpu_state.init = 0;
    kvm_arch_load_regs(env);
}

static void setup_kernel_sigmask(CPUState *env)
{
    sigset_t set;

    sigemptyset(&set);
    sigaddset(&set, SIGUSR2);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    sigprocmask(SIG_BLOCK, &set, NULL);

    sigprocmask(SIG_BLOCK, NULL, &set);
    sigdelset(&set, SIG_IPI);
    
    kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
}

void qemu_kvm_system_reset(void)
{
    CPUState *penv = first_cpu;

    pause_all_threads();

    qemu_system_reset();

    while (penv) {
        kvm_arch_cpu_reset(penv);
        penv = (CPUState *)penv->next_cpu;
    }

    resume_all_threads();
}

static int kvm_main_loop_cpu(CPUState *env)
{
    setup_kernel_sigmask(env);

    pthread_mutex_lock(&qemu_mutex);
    if (kvm_irqchip_in_kernel(kvm_context))
	env->halted = 0;

    kvm_qemu_init_env(env);
#ifdef TARGET_I386
    kvm_tpr_vcpu_start(env);
#endif

    cpu_single_env = env;
    kvm_load_registers(env);

    while (1) {
	while (!has_work(env))
	    kvm_main_loop_wait(env, 1000);
	if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
	    env->halted = 0;
    if (!kvm_irqchip_in_kernel(kvm_context)) {
	    if (env->kvm_cpu_state.init)
	        update_regs_for_init(env);
	    if (env->kvm_cpu_state.sipi_needed)
	        update_regs_for_sipi(env);
    }
	if (!env->halted && !env->kvm_cpu_state.init)
	    kvm_cpu_exec(env);
	env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
	kvm_main_loop_wait(env, 0);
    }
    pthread_mutex_unlock(&qemu_mutex);
    return 0;
}

static void *ap_main_loop(void *_env)
{
    CPUState *env = _env;
    sigset_t signals;
    struct ioperm_data *data = NULL;

    current_env = env;
    env->thread_id = kvm_get_thread_id();
    sigfillset(&signals);
    sigprocmask(SIG_BLOCK, &signals, NULL);
    kvm_create_vcpu(kvm_context, env->cpu_index);
    kvm_qemu_init_env(env);

#ifdef USE_KVM_DEVICE_ASSIGNMENT
    /* do ioperm for io ports of assigned devices */
    LIST_FOREACH(data, &ioperm_head, entries)
	on_vcpu(env, kvm_arch_do_ioperm, data);
#endif

    /* signal VCPU creation */
    pthread_mutex_lock(&qemu_mutex);
    current_env->kvm_cpu_state.created = 1;
    pthread_cond_signal(&qemu_vcpu_cond);

    /* and wait for machine initialization */
    while (!qemu_system_ready)
	qemu_cond_wait(&qemu_system_cond);
    pthread_mutex_unlock(&qemu_mutex);

    kvm_main_loop_cpu(env);
    return NULL;
}

void kvm_init_vcpu(CPUState *env)
{
    int cpu = env->cpu_index;
    pthread_create(&env->kvm_cpu_state.thread, NULL, ap_main_loop, env);

    while (env->kvm_cpu_state.created == 0)
	qemu_cond_wait(&qemu_vcpu_cond);
}

int kvm_init_ap(void)
{
#ifdef TARGET_I386
    kvm_tpr_opt_setup();
#endif
    qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);

    signal(SIG_IPI, sig_ipi_handler);
    return 0;
}

void qemu_kvm_notify_work(void)
{
    uint64_t value = 1;
    char buffer[8];
    size_t offset = 0;

    if (io_thread_fd == -1)
	return;

    memcpy(buffer, &value, sizeof(value));

    while (offset < 8) {
	ssize_t len;

	len = write(io_thread_fd, buffer + offset, 8 - offset);
	if (len == -1 && errno == EINTR)
	    continue;

	if (len <= 0)
	    break;

	offset += len;
    }

    if (offset != 8)
	fprintf(stderr, "failed to notify io thread\n");
}

/* If we have signalfd, we mask out the signals we want to handle and then
 * use signalfd to listen for them.  We rely on whatever the current signal
 * handler is to dispatch the signals when we receive them.
 */

static void sigfd_handler(void *opaque)
{
    int fd = (unsigned long)opaque;
    struct qemu_signalfd_siginfo info;
    struct sigaction action;
    ssize_t len;

    while (1) {
	do {
	    len = read(fd, &info, sizeof(info));
	} while (len == -1 && errno == EINTR);

	if (len == -1 && errno == EAGAIN)
	    break;

	if (len != sizeof(info)) {
	    printf("read from sigfd returned %ld: %m\n", len);
	    return;
	}

	sigaction(info.ssi_signo, NULL, &action);
	if (action.sa_handler)
	    action.sa_handler(info.ssi_signo);

    }
}

/* Used to break IO thread out of select */
static void io_thread_wakeup(void *opaque)
{
    int fd = (unsigned long)opaque;
    char buffer[8];
    size_t offset = 0;

    while (offset < 8) {
	ssize_t len;

	len = read(fd, buffer + offset, 8 - offset);
	if (len == -1 && errno == EINTR)
	    continue;

	if (len <= 0)
	    break;

	offset += len;
    }
}

int kvm_main_loop(void)
{
    int fds[2];
    sigset_t mask;
    int sigfd;

    io_thread = pthread_self();
    qemu_system_ready = 1;

    if (qemu_eventfd(fds) == -1) {
	fprintf(stderr, "failed to create eventfd\n");
	return -errno;
    }

    qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
			 (void *)(unsigned long)fds[0]);

    io_thread_fd = fds[1];

    sigemptyset(&mask);
    sigaddset(&mask, SIGIO);
    sigaddset(&mask, SIGALRM);
    sigprocmask(SIG_BLOCK, &mask, NULL);

    sigfd = qemu_signalfd(&mask);
    if (sigfd == -1) {
	fprintf(stderr, "failed to create signalfd\n");
	return -errno;
    }

    fcntl(sigfd, F_SETFL, O_NONBLOCK);

    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
			 (void *)(unsigned long)sigfd);

    pthread_cond_broadcast(&qemu_system_cond);

    io_thread_sigfd = sigfd;
    cpu_single_env = NULL;

    while (1) {
        main_loop_wait(1000);
        if (qemu_shutdown_requested())
            break;
        else if (qemu_powerdown_requested())
            qemu_system_powerdown();
        else if (qemu_reset_requested())
	    qemu_kvm_system_reset();
	else if (kvm_debug_stop_requested) {
	    vm_stop(EXCP_DEBUG);
	    kvm_debug_stop_requested = 0;
	}
    }

    pause_all_threads();
    pthread_mutex_unlock(&qemu_mutex);

    return 0;
}

static int kvm_debug(void *opaque, void *data)
{
    struct CPUState *env = (struct CPUState *)data;

    kvm_debug_stop_requested = 1;
    env->kvm_cpu_state.stopped = 1;
    return 1;
}

static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
{
    *data = cpu_inb(0, addr);
    return 0;
}

static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
{
    *data = cpu_inw(0, addr);
    return 0;
}

static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
{
    *data = cpu_inl(0, addr);
    return 0;
}

#define PM_IO_BASE 0xb000

static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
{
    if (addr == 0xb2) {
	switch (data) {
	case 0: {
	    cpu_outb(0, 0xb3, 0);
	    break;
	}
	case 0xf0: {
	    unsigned x;

	    /* enable acpi */
	    x = cpu_inw(0, PM_IO_BASE + 4);
	    x &= ~1;
	    cpu_outw(0, PM_IO_BASE + 4, x);
	    break;
	}
	case 0xf1: {
	    unsigned x;

	    /* enable acpi */
	    x = cpu_inw(0, PM_IO_BASE + 4);
	    x |= 1;
	    cpu_outw(0, PM_IO_BASE + 4, x);
	    break;
	}
	default:
	    break;
	}
	return 0;
    }
    cpu_outb(0, addr, data);
    return 0;
}

static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
{
    cpu_outw(0, addr, data);
    return 0;
}

static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
{
    cpu_outl(0, addr, data);
    return 0;
}

static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
{
	cpu_physical_memory_rw(addr, data, len, 0);
	return 0;
}

static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
{
	cpu_physical_memory_rw(addr, data, len, 1);
	return 0;
}

static int kvm_io_window(void *opaque)
{
    return 1;
}

 
static int kvm_halt(void *opaque, int vcpu)
{
    return kvm_arch_halt(opaque, vcpu);
}

static int kvm_shutdown(void *opaque, void *data)
{
    struct CPUState *env = (struct CPUState *)data;

    /* stop the current vcpu from going back to guest mode */
    env->kvm_cpu_state.stopped = 1;

    qemu_system_reset_request();
    return 1;
}
 
static struct kvm_callbacks qemu_kvm_ops = {
    .debug = kvm_debug,
    .inb   = kvm_inb,
    .inw   = kvm_inw,
    .inl   = kvm_inl,
    .outb  = kvm_outb,
    .outw  = kvm_outw,
    .outl  = kvm_outl,
    .mmio_read = kvm_mmio_read,
    .mmio_write = kvm_mmio_write,
    .halt  = kvm_halt,
    .shutdown = kvm_shutdown,
    .io_window = kvm_io_window,
    .try_push_interrupts = try_push_interrupts,
    .push_nmi = push_nmi,
    .post_kvm_run = post_kvm_run,
    .pre_kvm_run = pre_kvm_run,
#ifdef TARGET_I386
    .tpr_access = handle_tpr_access,
#endif
#ifdef TARGET_PPC
    .powerpc_dcr_read = handle_powerpc_dcr_read,
    .powerpc_dcr_write = handle_powerpc_dcr_write,
#endif
};

int kvm_qemu_init()
{
    /* Try to initialize kvm */
    kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
    if (!kvm_context) {
      	return -1;
    }
    pthread_mutex_lock(&qemu_mutex);

    return 0;
}

int kvm_qemu_create_context(void)
{
    int r;
    if (!kvm_irqchip) {
        kvm_disable_irqchip_creation(kvm_context);
    }
    if (!kvm_pit) {
        kvm_disable_pit_creation(kvm_context);
    }
    if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
	kvm_qemu_destroy();
	return -1;
    }
    r = kvm_arch_qemu_create_context();
    if(r <0)
	kvm_qemu_destroy();
    return 0;
}

void kvm_qemu_destroy(void)
{
    kvm_finalize(kvm_context);
}

void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
                                      unsigned long size,
                                      unsigned long phys_offset)
{
    int r = 0;
    unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;

    phys_offset &= ~IO_MEM_ROM;

    if (area_flags == IO_MEM_UNASSIGNED) {
        kvm_unregister_memory_area(kvm_context, start_addr, size);
        return;
    }

    r = kvm_is_containing_region(kvm_context, start_addr, size);
    if (r)
        return;

    if (area_flags >= TLB_MMIO)
        return;

    r = kvm_register_phys_mem(kvm_context, start_addr,
                              phys_ram_base + phys_offset,
                              size, 0);
    if (r < 0) {
        printf("kvm_cpu_register_physical_memory: failed\n");
        exit(1);
    }
    return;
}

void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
                                        target_phys_addr_t size,
                                        unsigned long phys_offset)
{
    kvm_unregister_memory_area(kvm_context, start_addr, size);
}

int kvm_setup_guest_memory(void *area, unsigned long size)
{
    int ret = 0;

#ifdef MADV_DONTFORK
    if (kvm_enabled() && !kvm_has_sync_mmu(kvm_context))
        ret = madvise(area, size, MADV_DONTFORK);
#endif

    if (ret)
        perror ("madvise");

    return ret;
}

int kvm_qemu_check_extension(int ext)
{
    return kvm_check_extension(kvm_context, ext);
}

int kvm_qemu_init_env(CPUState *cenv)
{
    return kvm_arch_qemu_init_env(cenv);
}

struct kvm_guest_debug_data {
    struct kvm_debug_guest dbg;
    int err;
};

void kvm_invoke_guest_debug(void *data)
{
    struct kvm_guest_debug_data *dbg_data = data;

    dbg_data->err = kvm_guest_debug(kvm_context, cpu_single_env->cpu_index,
                                    &dbg_data->dbg);
}

int kvm_update_debugger(CPUState *env)
{
    struct kvm_guest_debug_data data;
    CPUBreakpoint *bp;
    int i;

    memset(data.dbg.breakpoints, 0, sizeof(data.dbg.breakpoints));

    data.dbg.enabled = 0;
    if (!TAILQ_EMPTY(&env->breakpoints) || env->singlestep_enabled) {
        bp = TAILQ_FIRST(&env->breakpoints);
	data.dbg.enabled = 1;
	for (i = 0; i < 4; ++i) {
	    data.dbg.breakpoints[i].enabled = bp != NULL;
            if (bp) {
                data.dbg.breakpoints[i].address = bp->pc;
                bp = TAILQ_NEXT(bp, entry);
            }
	}
	data.dbg.singlestep = env->singlestep_enabled;
    }
    on_vcpu(env, kvm_invoke_guest_debug, &data);
    return data.err;
}


/*
 * dirty pages logging
 */
/* FIXME: use unsigned long pointer instead of unsigned char */
unsigned char *kvm_dirty_bitmap = NULL;
int kvm_physical_memory_set_dirty_tracking(int enable)
{
    int r = 0;

    if (!kvm_enabled())
        return 0;

    if (enable) {
        if (!kvm_dirty_bitmap) {
            unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
            kvm_dirty_bitmap = qemu_malloc(bitmap_size);
            if (kvm_dirty_bitmap == NULL) {
                perror("Failed to allocate dirty pages bitmap");
                r=-1;
            }
            else {
                r = kvm_dirty_pages_log_enable_all(kvm_context);
            }
        }
    }
    else {
        if (kvm_dirty_bitmap) {
            r = kvm_dirty_pages_log_reset(kvm_context);
            qemu_free(kvm_dirty_bitmap);
            kvm_dirty_bitmap = NULL;
        }
    }
    return r;
}

/* get kvm's dirty pages bitmap and update qemu's */
int kvm_get_dirty_pages_log_range(unsigned long start_addr,
                                  unsigned char *bitmap,
                                  unsigned int offset,
                                  unsigned long mem_size)
{
    unsigned int i, j, n=0;
    unsigned char c;
    unsigned long page_number, addr, addr1;
    ram_addr_t ram_addr;
    unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;

    /* 
     * bitmap-traveling is faster than memory-traveling (for addr...) 
     * especially when most of the memory is not dirty.
     */
    for (i=0; i<len; i++) {
        c = bitmap[i];
        while (c>0) {
            j = ffsl(c) - 1;
            c &= ~(1u<<j);
            page_number = i * 8 + j;
            addr1 = page_number * TARGET_PAGE_SIZE;
            addr  = offset + addr1;
            ram_addr = cpu_get_physical_page_desc(addr);
            cpu_physical_memory_set_dirty(ram_addr);
            n++;
        }
    }
    return 0;
}
int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
                            void *bitmap, void *opaque)
{
    return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
}

/* 
 * get kvm's dirty pages bitmap and update qemu's
 * we only care about physical ram, which resides in slots 0 and 3
 */
int kvm_update_dirty_pages_log(void)
{
    int r = 0;


    r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
                                  kvm_dirty_bitmap, NULL,
                                  kvm_get_dirty_bitmap_cb);
    return r;
}

void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
                         int log)
{
    if (log)
	kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
    else
	kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
}

int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
{
    unsigned int bsize  = BITMAP_SIZE(phys_ram_size);
    unsigned int brsize = BITMAP_SIZE(ram_size);
    unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
    unsigned int extra_bytes = (extra_pages +7)/8;
    unsigned int hole_start = BITMAP_SIZE(0xa0000);
    unsigned int hole_end   = BITMAP_SIZE(0xc0000);

    memset(bitmap, 0xFF, brsize + extra_bytes);
    memset(bitmap + hole_start, 0, hole_end - hole_start);
    memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);

    return 0;
}

#ifdef KVM_CAP_IRQCHIP

int kvm_set_irq(int irq, int level)
{
    return kvm_set_irq_level(kvm_context, irq, level);
}

#endif

int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
{
    return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
}

void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
			      unsigned long size, int log, int writable)
{
    return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
}

void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
			      unsigned long size)
{
    kvm_destroy_phys_mem(kvm_context, start_addr, size);
}

void kvm_mutex_unlock(void)
{
    assert(!cpu_single_env);
    pthread_mutex_unlock(&qemu_mutex);
}

void kvm_mutex_lock(void)
{
    pthread_mutex_lock(&qemu_mutex);
    cpu_single_env = NULL;
}

int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
{
    return kvm_register_coalesced_mmio(kvm_context, addr, size);
}

int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
				       unsigned int size)
{
    return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
}

#ifdef USE_KVM_DEVICE_ASSIGNMENT
void kvm_add_ioperm_data(struct ioperm_data *data)
{
    LIST_INSERT_HEAD(&ioperm_head, data, entries);
}

void kvm_ioperm(CPUState *env, void *data)
{
    if (kvm_enabled() && qemu_system_ready)
	on_vcpu(env, kvm_arch_do_ioperm, data);
}

#endif

void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
{
    void *buf;

    buf = qemu_malloc((end_addr - start_addr) / 8 + 2);
    kvm_get_dirty_pages_range(kvm_context, start_addr, end_addr - start_addr,
			      buf, NULL, kvm_get_dirty_bitmap_cb);
    qemu_free(buf);
}

int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t len)
{
#ifndef TARGET_IA64
    kvm_qemu_log_memory(phys_addr, len, 1);
#endif
    return 0;
}

int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t len)
{
#ifndef TARGET_IA64
    kvm_qemu_log_memory(phys_addr, len, 0);
#endif
    return 0;
}