aboutsummaryrefslogtreecommitdiff
path: root/qemu-kvm-x86.c
blob: 37354fb739754b621d111b1b19147a9d76e60734 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
 * qemu/kvm integration, x86 specific code
 *
 * Copyright (C) 2006-2008 Qumranet Technologies
 *
 * Licensed under the terms of the GNU GPL version 2 or higher.
 */

#include "config.h"
#include "config-host.h"

#include <string.h>
#include "hw/hw.h"

#include "qemu-kvm.h"
#include <libkvm.h>
#include <pthread.h>
#include <sys/utsname.h>
#include <linux/kvm_para.h>

#define MSR_IA32_TSC		0x10

static struct kvm_msr_list *kvm_msr_list;
extern unsigned int kvm_shadow_memory;
extern kvm_context_t kvm_context;
static int kvm_has_msr_star;

static int lm_capable_kernel;

int kvm_arch_qemu_create_context(void)
{
    int i;
    struct utsname utsname;

    uname(&utsname);
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;

    if (kvm_shadow_memory)
        kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);

    kvm_msr_list = kvm_get_msr_list(kvm_context);
    if (!kvm_msr_list)
		return -1;
    for (i = 0; i < kvm_msr_list->nmsrs; ++i)
	if (kvm_msr_list->indices[i] == MSR_STAR)
	    kvm_has_msr_star = 1;
	return 0;
}

static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
                          uint64_t data)
{
    entry->index = index;
    entry->data  = data;
}

/* returns 0 on success, non-0 on failure */
static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
{
        switch (entry->index) {
        case MSR_IA32_SYSENTER_CS:
            env->sysenter_cs  = entry->data;
            break;
        case MSR_IA32_SYSENTER_ESP:
            env->sysenter_esp = entry->data;
            break;
        case MSR_IA32_SYSENTER_EIP:
            env->sysenter_eip = entry->data;
            break;
        case MSR_STAR:
            env->star         = entry->data;
            break;
#ifdef TARGET_X86_64
        case MSR_CSTAR:
            env->cstar        = entry->data;
            break;
        case MSR_KERNELGSBASE:
            env->kernelgsbase = entry->data;
            break;
        case MSR_FMASK:
            env->fmask        = entry->data;
            break;
        case MSR_LSTAR:
            env->lstar        = entry->data;
            break;
#endif
        case MSR_IA32_TSC:
            env->tsc          = entry->data;
            break;
        default:
            printf("Warning unknown msr index 0x%x\n", entry->index);
            return 1;
        }
        return 0;
}

#ifdef TARGET_X86_64
#define MSR_COUNT 9
#else
#define MSR_COUNT 5
#endif

static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = 3;
    lhs->present = 1;
    lhs->dpl = 3;
    lhs->db = 0;
    lhs->s = 1;
    lhs->l = 0;
    lhs->g = 0;
    lhs->avl = 0;
    lhs->unusable = 0;
}

static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    unsigned flags = rhs->flags;
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
    lhs->present = (flags & DESC_P_MASK) != 0;
    lhs->dpl = rhs->selector & 3;
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
    lhs->s = (flags & DESC_S_MASK) != 0;
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
    lhs->g = (flags & DESC_G_MASK) != 0;
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
    lhs->unusable = 0;
}

static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->flags =
	(rhs->type << DESC_TYPE_SHIFT)
	| (rhs->present * DESC_P_MASK)
	| (rhs->dpl << DESC_DPL_SHIFT)
	| (rhs->db << DESC_B_SHIFT)
	| (rhs->s * DESC_S_MASK)
	| (rhs->l << DESC_L_SHIFT)
	| (rhs->g * DESC_G_MASK)
	| (rhs->avl * DESC_AVL_MASK);
}

/* the reset values of qemu are not compatible to SVM
 * this function is used to fix the segment descriptor values */
static void fix_realmode_dataseg(struct kvm_segment *seg)
{
	seg->type = 0x02;
	seg->present = 1;
	seg->s = 1;
}

void kvm_arch_load_regs(CPUState *env)
{
    struct kvm_regs regs;
    struct kvm_fpu fpu;
    struct kvm_sregs sregs;
    struct kvm_msr_entry msrs[MSR_COUNT];
    int rc, n, i;

    regs.rax = env->regs[R_EAX];
    regs.rbx = env->regs[R_EBX];
    regs.rcx = env->regs[R_ECX];
    regs.rdx = env->regs[R_EDX];
    regs.rsi = env->regs[R_ESI];
    regs.rdi = env->regs[R_EDI];
    regs.rsp = env->regs[R_ESP];
    regs.rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
    regs.r8 = env->regs[8];
    regs.r9 = env->regs[9];
    regs.r10 = env->regs[10];
    regs.r11 = env->regs[11];
    regs.r12 = env->regs[12];
    regs.r13 = env->regs[13];
    regs.r14 = env->regs[14];
    regs.r15 = env->regs[15];
#endif

    regs.rflags = env->eflags;
    regs.rip = env->eip;

    kvm_set_regs(kvm_context, env->cpu_index, &regs);

    memset(&fpu, 0, sizeof fpu);
    fpu.fsw = env->fpus & ~(7 << 11);
    fpu.fsw |= (env->fpstt & 7) << 11;
    fpu.fcw = env->fpuc;
    for (i = 0; i < 8; ++i)
	fpu.ftwx |= (!env->fptags[i]) << i;
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
    fpu.mxcsr = env->mxcsr;
    kvm_set_fpu(kvm_context, env->cpu_index, &fpu);

    memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));

    if ((env->eflags & VM_MASK)) {
	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
    } else {
	    set_seg(&sregs.cs, &env->segs[R_CS]);
	    set_seg(&sregs.ds, &env->segs[R_DS]);
	    set_seg(&sregs.es, &env->segs[R_ES]);
	    set_seg(&sregs.fs, &env->segs[R_FS]);
	    set_seg(&sregs.gs, &env->segs[R_GS]);
	    set_seg(&sregs.ss, &env->segs[R_SS]);

	    if (env->cr[0] & CR0_PE_MASK) {
		/* force ss cpl to cs cpl */
		sregs.ss.selector = (sregs.ss.selector & ~3) |
			(sregs.cs.selector & 3);
		sregs.ss.dpl = sregs.ss.selector & 3;
	    }

	    if (!(env->cr[0] & CR0_PG_MASK)) {
		    fix_realmode_dataseg(&sregs.cs);
		    fix_realmode_dataseg(&sregs.ds);
		    fix_realmode_dataseg(&sregs.es);
		    fix_realmode_dataseg(&sregs.fs);
		    fix_realmode_dataseg(&sregs.gs);
		    fix_realmode_dataseg(&sregs.ss);
	    }
    }

    set_seg(&sregs.tr, &env->tr);
    set_seg(&sregs.ldt, &env->ldt);

    sregs.idt.limit = env->idt.limit;
    sregs.idt.base = env->idt.base;
    sregs.gdt.limit = env->gdt.limit;
    sregs.gdt.base = env->gdt.base;

    sregs.cr0 = env->cr[0];
    sregs.cr2 = env->cr[2];
    sregs.cr3 = env->cr[3];
    sregs.cr4 = env->cr[4];

    sregs.apic_base = cpu_get_apic_base(env);
    sregs.efer = env->efer;
    sregs.cr8 = cpu_get_apic_tpr(env);

    kvm_set_sregs(kvm_context, env->cpu_index, &sregs);

    /* msrs */
    n = 0;
    set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS,  env->sysenter_cs);
    set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
    set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
    if (kvm_has_msr_star)
	set_msr_entry(&msrs[n++], MSR_STAR,              env->star);
    set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
#ifdef TARGET_X86_64
    if (lm_capable_kernel) {
        set_msr_entry(&msrs[n++], MSR_CSTAR,             env->cstar);
        set_msr_entry(&msrs[n++], MSR_KERNELGSBASE,      env->kernelgsbase);
        set_msr_entry(&msrs[n++], MSR_FMASK,             env->fmask);
        set_msr_entry(&msrs[n++], MSR_LSTAR  ,           env->lstar);
    }
#endif

    rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
    if (rc == -1)
        perror("kvm_set_msrs FAILED");
}


void kvm_arch_save_regs(CPUState *env)
{
    struct kvm_regs regs;
    struct kvm_fpu fpu;
    struct kvm_sregs sregs;
    struct kvm_msr_entry msrs[MSR_COUNT];
    uint32_t hflags;
    uint32_t i, n, rc;

    kvm_get_regs(kvm_context, env->cpu_index, &regs);

    env->regs[R_EAX] = regs.rax;
    env->regs[R_EBX] = regs.rbx;
    env->regs[R_ECX] = regs.rcx;
    env->regs[R_EDX] = regs.rdx;
    env->regs[R_ESI] = regs.rsi;
    env->regs[R_EDI] = regs.rdi;
    env->regs[R_ESP] = regs.rsp;
    env->regs[R_EBP] = regs.rbp;
#ifdef TARGET_X86_64
    env->regs[8] = regs.r8;
    env->regs[9] = regs.r9;
    env->regs[10] = regs.r10;
    env->regs[11] = regs.r11;
    env->regs[12] = regs.r12;
    env->regs[13] = regs.r13;
    env->regs[14] = regs.r14;
    env->regs[15] = regs.r15;
#endif

    env->eflags = regs.rflags;
    env->eip = regs.rip;

    kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
    env->fpstt = (fpu.fsw >> 11) & 7;
    env->fpus = fpu.fsw;
    env->fpuc = fpu.fcw;
    for (i = 0; i < 8; ++i)
	env->fptags[i] = !((fpu.ftwx >> i) & 1);
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
    env->mxcsr = fpu.mxcsr;

    kvm_get_sregs(kvm_context, env->cpu_index, &sregs);

    memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));

    get_seg(&env->segs[R_CS], &sregs.cs);
    get_seg(&env->segs[R_DS], &sregs.ds);
    get_seg(&env->segs[R_ES], &sregs.es);
    get_seg(&env->segs[R_FS], &sregs.fs);
    get_seg(&env->segs[R_GS], &sregs.gs);
    get_seg(&env->segs[R_SS], &sregs.ss);

    get_seg(&env->tr, &sregs.tr);
    get_seg(&env->ldt, &sregs.ldt);

    env->idt.limit = sregs.idt.limit;
    env->idt.base = sregs.idt.base;
    env->gdt.limit = sregs.gdt.limit;
    env->gdt.base = sregs.gdt.base;

    env->cr[0] = sregs.cr0;
    env->cr[2] = sregs.cr2;
    env->cr[3] = sregs.cr3;
    env->cr[4] = sregs.cr4;

    cpu_set_apic_base(env, sregs.apic_base);

    env->efer = sregs.efer;
    //cpu_set_apic_tpr(env, sregs.cr8);

#define HFLAG_COPY_MASK ~( \
			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)



    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);

    if (env->efer & MSR_EFER_LMA) {
        hflags |= HF_LMA_MASK;
    }

    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
    } else {
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_CS32_SHIFT);
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_SS32_SHIFT);
        if (!(env->cr[0] & CR0_PE_MASK) ||
                   (env->eflags & VM_MASK) ||
                   !(hflags & HF_CS32_MASK)) {
                hflags |= HF_ADDSEG_MASK;
            } else {
                hflags |= ((env->segs[R_DS].base |
                                env->segs[R_ES].base |
                                env->segs[R_SS].base) != 0) <<
                    HF_ADDSEG_SHIFT;
            }
    }
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
    env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
    env->df = 1 - (2 * ((env->eflags >> 10) & 1));
    env->cc_op = CC_OP_EFLAGS;
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);

    /* msrs */
    n = 0;
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
    if (kvm_has_msr_star)
	msrs[n++].index = MSR_STAR;
    msrs[n++].index = MSR_IA32_TSC;
#ifdef TARGET_X86_64
    if (lm_capable_kernel) {
        msrs[n++].index = MSR_CSTAR;
        msrs[n++].index = MSR_KERNELGSBASE;
        msrs[n++].index = MSR_FMASK;
        msrs[n++].index = MSR_LSTAR;
    }
#endif
    rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
    if (rc == -1) {
        perror("kvm_get_msrs FAILED");
    }
    else {
        n = rc; /* actual number of MSRs */
        for (i=0 ; i<n; i++) {
            if (get_msr_entry(&msrs[i], env))
                return;
        }
    }
}

static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
		       uint32_t *ecx, uint32_t *edx)
{
    uint32_t vec[4];

    vec[0] = function;
    asm volatile (
#ifdef __x86_64__
	 "sub $128, %%rsp \n\t"  /* skip red zone */
         "push %0;  push %%rsi \n\t"
	 "push %%rax; push %%rbx; push %%rcx; push %%rdx \n\t"
	 "mov 8*5(%%rsp), %%rsi \n\t"
	 "mov (%%rsi), %%eax \n\t"
	 "cpuid \n\t"
	 "mov %%eax, (%%rsi) \n\t"
	 "mov %%ebx, 4(%%rsi) \n\t"
	 "mov %%ecx, 8(%%rsi) \n\t"
	 "mov %%edx, 12(%%rsi) \n\t"
	 "pop %%rdx; pop %%rcx; pop %%rbx; pop %%rax \n\t"
	 "pop %%rsi; pop %0 \n\t"
	 "add $128, %%rsp"
#else
         "push %0;  push %%esi \n\t"
	 "push %%eax; push %%ebx; push %%ecx; push %%edx \n\t"
	 "mov 4*5(%%esp), %%esi \n\t"
	 "mov (%%esi), %%eax \n\t"
	 "cpuid \n\t"
	 "mov %%eax, (%%esi) \n\t"
	 "mov %%ebx, 4(%%esi) \n\t"
	 "mov %%ecx, 8(%%esi) \n\t"
	 "mov %%edx, 12(%%esi) \n\t"
	 "pop %%edx; pop %%ecx; pop %%ebx; pop %%eax \n\t"
	 "pop %%esi; pop %0 \n\t"
#endif
	 : : "rm"(vec) : "memory");
    if (eax)
	*eax = vec[0];
    if (ebx)
	*ebx = vec[1];
    if (ecx)
	*ecx = vec[2];
    if (edx)
	*edx = vec[3];
}


static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
			 CPUState *env)
{
    env->regs[R_EAX] = function;
    qemu_kvm_cpuid_on_env(env);
    e->function = function;
    e->eax = env->regs[R_EAX];
    e->ebx = env->regs[R_EBX];
    e->ecx = env->regs[R_ECX];
    e->edx = env->regs[R_EDX];
    if (function == 0x80000001) {
	uint32_t h_eax, h_edx;

	host_cpuid(function, &h_eax, NULL, NULL, &h_edx);

	// long mode
	if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
	    e->edx &= ~0x20000000u;
	// syscall
	if ((h_edx & 0x00000800) == 0)
	    e->edx &= ~0x00000800u;
	// nx
	if ((h_edx & 0x00100000) == 0)
	    e->edx &= ~0x00100000u;
	// svm
	if (e->ecx & 4)
	    e->ecx &= ~4u;
    }
    // sysenter isn't supported on compatibility mode on AMD.  and syscall
    // isn't supported in compatibility mode on Intel.  so advertise the
    // actuall cpu, and say goodbye to migration between different vendors
    // is you use compatibility mode.
    if (function == 0) {
	uint32_t bcd[3];

	host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
	e->ebx = bcd[0];
	e->ecx = bcd[1];
	e->edx = bcd[2];
    }
}

int kvm_arch_qemu_init_env(CPUState *cenv)
{
    struct kvm_cpuid_entry cpuid_ent[100];
#ifdef KVM_CPUID_SIGNATURE
    struct kvm_cpuid_entry *pv_ent;
    uint32_t signature[3];
#endif
    int cpuid_nent = 0;
    CPUState copy;
    uint32_t i, limit;
    int has_clocksource = 0;
#ifdef KVM_CAP_CLOCKSOURCE
    has_clocksource = kvm_check_extension(kvm_context, KVM_CAP_CLOCKSOURCE);
#endif

    copy = *cenv;

#ifdef KVM_CPUID_SIGNATURE
    /* Paravirtualization CPUIDs */
    memcpy(signature, "KVMKVMKVM", 12);
    pv_ent = &cpuid_ent[cpuid_nent++];
    memset(pv_ent, 0, sizeof(*pv_ent));
    pv_ent->function = KVM_CPUID_SIGNATURE;
    pv_ent->eax = 0;
    pv_ent->ebx = signature[0];
    pv_ent->ecx = signature[1];
    pv_ent->edx = signature[2];

    pv_ent = &cpuid_ent[cpuid_nent++];
    memset(pv_ent, 0, sizeof(*pv_ent));
    pv_ent->function = KVM_CPUID_FEATURES;
    pv_ent->eax = (has_clocksource << KVM_FEATURE_CLOCKSOURCE);
#endif

    copy.regs[R_EAX] = 0;
    qemu_kvm_cpuid_on_env(&copy);
    limit = copy.regs[R_EAX];

    for (i = 0; i <= limit; ++i)
	do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);

    copy.regs[R_EAX] = 0x80000000;
    qemu_kvm_cpuid_on_env(&copy);
    limit = copy.regs[R_EAX];

    for (i = 0x80000000; i <= limit; ++i)
	do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);

    kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
    return 0;
}

int kvm_arch_halt(void *opaque, int vcpu)
{
    CPUState *env = cpu_single_env;

    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
	  (env->eflags & IF_MASK))) {
	    env->hflags |= HF_HALTED_MASK;
	    env->exception_index = EXCP_HLT;
    }
    return 1;
}

void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
{
    CPUState *env = cpu_single_env;

    if (!kvm_irqchip_in_kernel(kvm_context))
	kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
}

void kvm_arch_post_kvm_run(void *opaque, int vcpu)
{
    CPUState *env = qemu_kvm_cpu_env(vcpu);
    cpu_single_env = env;

    env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
	? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
    env->ready_for_interrupt_injection
	= kvm_is_ready_for_interrupt_injection(kvm_context, vcpu);

    cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
    cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
}

int kvm_arch_has_work(CPUState *env)
{
    if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
	(env->eflags & IF_MASK))
	return 1;
    return 0;
}

int kvm_arch_try_push_interrupts(void *opaque)
{
    CPUState *env = cpu_single_env;
    int r, irq;

    if (env->ready_for_interrupt_injection &&
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
        (env->eflags & IF_MASK)) {
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
	    irq = cpu_get_pic_interrupt(env);
	    if (irq >= 0) {
		r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
		if (r < 0)
		    printf("cpu %d fail inject %x\n", env->cpu_index, irq);
	    }
    }

    return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
}

void kvm_arch_update_regs_for_sipi(CPUState *env)
{
    SegmentCache cs = env->segs[R_CS];

    kvm_arch_save_regs(env);
    env->segs[R_CS] = cs;
    env->eip = 0;
    kvm_arch_load_regs(env);
}

int handle_tpr_access(void *opaque, int vcpu,
			     uint64_t rip, int is_write)
{
    kvm_tpr_access_report(cpu_single_env, rip, is_write);
    return 0;
}