aboutsummaryrefslogtreecommitdiff
path: root/kvm/libkvm/libkvm.c
blob: d1e95a40125ce22735156feaec4b8d637b754ebc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
/*
 * Kernel-based Virtual Machine control library
 *
 * This library provides an API to control the kvm hardware virtualization
 * module.
 *
 * Copyright (C) 2006 Qumranet
 *
 * Authors:
 *
 *  Avi Kivity <avi@qumranet.com>
 *  Yaniv Kamay <yaniv@qumranet.com>
 *
 * This work is licensed under the GNU LGPL license, version 2.
 */

#ifndef __user
#define __user /* temporary, until installed via make headers_install */
#endif

#include <linux/kvm.h>

#define EXPECTED_KVM_API_VERSION 12

#if EXPECTED_KVM_API_VERSION != KVM_API_VERSION
#error libkvm: userspace and kernel version mismatch
#endif

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include "libkvm.h"

#if defined(__x86_64__) || defined(__i386__)
#include "kvm-x86.h"
#endif

#if defined(__ia64__)
#include "kvm-ia64.h"
#endif

#if defined(__powerpc__)
#include "kvm-powerpc.h"
#endif

int kvm_abi = EXPECTED_KVM_API_VERSION;
int kvm_page_size;

struct slot_info {
	unsigned long phys_addr;
	unsigned long len;
	int user_alloc;
	unsigned long userspace_addr;
	unsigned flags;
};

struct slot_info slots[KVM_MAX_NUM_MEM_REGIONS];

void init_slots(void)
{
	int i;

	for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS; ++i)
		slots[i].len = 0;
}

int get_free_slot(kvm_context_t kvm)
{
	int i;
	int tss_ext;

#ifdef KVM_CAP_SET_TSS_ADDR
	tss_ext = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
#else
	tss_ext = 0;
#endif

	/*
	 * on older kernels where the set tss ioctl is not supprted we must save
	 * slot 0 to hold the extended memory, as the vmx will use the last 3
	 * pages of this slot.
	 */
	if (tss_ext > 0)
		i = 0;
	else
		i = 1;

	for (; i < KVM_MAX_NUM_MEM_REGIONS; ++i)
		if (!slots[i].len)
			return i;
	return -1;
}

void register_slot(int slot, unsigned long phys_addr, unsigned long len,
		   int user_alloc, unsigned long userspace_addr, unsigned flags)
{
	slots[slot].phys_addr = phys_addr;
	slots[slot].len = len;
	slots[slot].user_alloc = user_alloc;
	slots[slot].userspace_addr = userspace_addr;
        slots[slot].flags = flags;
}

void free_slot(int slot)
{
	slots[slot].len = 0;
}

int get_slot(unsigned long phys_addr)
{
	int i;

	for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS ; ++i) {
		if (slots[i].len && slots[i].phys_addr <= phys_addr &&
	 	    (slots[i].phys_addr + slots[i].len-1) >= phys_addr)
			return i;
	}
	return -1;
}

int get_intersecting_slot(unsigned long phys_addr)
{
	int i;

	for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS ; ++i)
		if (slots[i].len && slots[i].phys_addr < phys_addr &&
		    (slots[i].phys_addr + slots[i].len) > phys_addr)
			return i;
	return -1;
}

/* 
 * dirty pages logging control 
 */
static int kvm_dirty_pages_log_change(kvm_context_t kvm, unsigned long phys_addr
				      , __u32 flag)
{
	int r;
	int slot;

	slot = get_slot(phys_addr);
	if (slot == -1) {
		fprintf(stderr, "BUG: %s: invalid parameters\n", __FUNCTION__);
		return 1;
	}
	flag |= slots[slot].flags;
#ifdef KVM_CAP_USER_MEMORY
	if (slots[slot].user_alloc) {
		struct kvm_userspace_memory_region mem = {
			.slot = slot,
			.memory_size = slots[slot].len,
			.guest_phys_addr = slots[slot].phys_addr,
			.userspace_addr = slots[slot].userspace_addr,
			.flags = flag,
		};
		r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem);
	}
#endif
	if (!slots[slot].user_alloc) {
		struct kvm_memory_region mem = {
			.slot = slot,
			.memory_size = slots[slot].len,
			.guest_phys_addr = slots[slot].phys_addr,
			.flags = flag,
		};
		r = ioctl(kvm->vm_fd, KVM_SET_MEMORY_REGION, &mem);
	}
	if (r == -1)
		fprintf(stderr, "%s: %m\n", __FUNCTION__);
	return r;
}

static int kvm_dirty_pages_log_change_all(kvm_context_t kvm, __u32 flag)
{
	int i, r;

	for (i=r=0; i<KVM_MAX_NUM_MEM_REGIONS && r==0; i++) {
		if (slots[i].len)
			r = kvm_dirty_pages_log_change(kvm, slots[i].phys_addr,
						       flag);
	}
	return r;
}

/**
 * Enable dirty page logging for all memory regions
 */
int kvm_dirty_pages_log_enable_all(kvm_context_t kvm)
{
	if (kvm->dirty_pages_log_all)
		return 0;
	kvm->dirty_pages_log_all = 1;
	return kvm_dirty_pages_log_change_all(kvm, KVM_MEM_LOG_DIRTY_PAGES);
}

/**
 * Enable dirty page logging only for memory regions that were created with
 *     dirty logging enabled (disable for all other memory regions).
 */
int kvm_dirty_pages_log_reset(kvm_context_t kvm)
{
	if (!kvm->dirty_pages_log_all)
		return 0;
	kvm->dirty_pages_log_all = 0;
	return kvm_dirty_pages_log_change_all(kvm, 0);
}


kvm_context_t kvm_init(struct kvm_callbacks *callbacks,
		       void *opaque)
{
	int fd;
	kvm_context_t kvm;
	int r;

	fd = open("/dev/kvm", O_RDWR);
	if (fd == -1) {
		perror("open /dev/kvm");
		return NULL;
	}
	r = ioctl(fd, KVM_GET_API_VERSION, 0);
	if (r == -1) {
	    fprintf(stderr, "kvm kernel version too old: "
		    "KVM_GET_API_VERSION ioctl not supported\n");
	    goto out_close;
	}
	if (r < EXPECTED_KVM_API_VERSION) {
		fprintf(stderr, "kvm kernel version too old: "
			"We expect API version %d or newer, but got "
			"version %d\n",
			EXPECTED_KVM_API_VERSION, r);
	    goto out_close;
	}
	if (r > EXPECTED_KVM_API_VERSION) {
	    fprintf(stderr, "kvm userspace version too old\n");
	    goto out_close;
	}
	kvm_abi = r;
	kvm_page_size = getpagesize();
	kvm = malloc(sizeof(*kvm));
	kvm->fd = fd;
	kvm->vm_fd = -1;
	kvm->callbacks = callbacks;
	kvm->opaque = opaque;
	kvm->dirty_pages_log_all = 0;
	kvm->no_irqchip_creation = 0;
	kvm->no_pit_creation = 0;

	return kvm;
 out_close:
	close(fd);
	return NULL;
}

void kvm_finalize(kvm_context_t kvm)
{
    	if (kvm->vcpu_fd[0] != -1)
		close(kvm->vcpu_fd[0]);
    	if (kvm->vm_fd != -1)
		close(kvm->vm_fd);
	close(kvm->fd);
	free(kvm);
}

void kvm_disable_irqchip_creation(kvm_context_t kvm)
{
	kvm->no_irqchip_creation = 1;
}

void kvm_disable_pit_creation(kvm_context_t kvm)
{
	kvm->no_pit_creation = 1;
}

int kvm_create_vcpu(kvm_context_t kvm, int slot)
{
	long mmap_size;
	int r;

	r = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, slot);
	if (r == -1) {
		r = -errno;
		fprintf(stderr, "kvm_create_vcpu: %m\n");
		return r;
	}
	kvm->vcpu_fd[slot] = r;
	mmap_size = ioctl(kvm->fd, KVM_GET_VCPU_MMAP_SIZE, 0);
	if (mmap_size == -1) {
		r = -errno;
		fprintf(stderr, "get vcpu mmap size: %m\n");
		return r;
	}
	kvm->run[slot] = mmap(NULL, mmap_size, PROT_READ|PROT_WRITE, MAP_SHARED,
			      kvm->vcpu_fd[slot], 0);
	if (kvm->run[slot] == MAP_FAILED) {
		r = -errno;
		fprintf(stderr, "mmap vcpu area: %m\n");
		return r;
	}
	return 0;
}

int kvm_create_vm(kvm_context_t kvm)
{
	int fd = kvm->fd;

	kvm->vcpu_fd[0] = -1;

	fd = ioctl(fd, KVM_CREATE_VM, 0);
	if (fd == -1) {
		fprintf(stderr, "kvm_create_vm: %m\n");
		return -1;
	}
	kvm->vm_fd = fd;
	return 0;
}

static int kvm_create_default_phys_mem(kvm_context_t kvm,
				       unsigned long phys_mem_bytes,
				       void **vm_mem)
{
	unsigned long memory = (phys_mem_bytes + PAGE_SIZE - 1) & PAGE_MASK;
	int r;

#ifdef KVM_CAP_USER_MEMORY
	r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY);
	if (r > 0)
		return 0;
	else
#endif
		r = kvm_alloc_kernel_memory(kvm, memory, vm_mem);
	if (r < 0)
		return r;

	r = kvm_arch_create_default_phys_mem(kvm, phys_mem_bytes, vm_mem);
	if (r < 0)
		return r;

	return 0;
}

int kvm_check_extension(kvm_context_t kvm, int ext)
{
	int ret;

	ret = ioctl(kvm->fd, KVM_CHECK_EXTENSION, ext);
	if (ret > 0)
		return 1;
	return 0;
}

void kvm_create_irqchip(kvm_context_t kvm)
{
	int r;

	kvm->irqchip_in_kernel = 0;
#ifdef KVM_CAP_IRQCHIP
	if (!kvm->no_irqchip_creation) {
		r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_IRQCHIP);
		if (r > 0) {	/* kernel irqchip supported */
			r = ioctl(kvm->vm_fd, KVM_CREATE_IRQCHIP);
			if (r >= 0)
				kvm->irqchip_in_kernel = 1;
			else
				fprintf(stderr, "Create kernel PIC irqchip failed\n");
		}
	}
#endif
}

int kvm_create(kvm_context_t kvm, unsigned long phys_mem_bytes, void **vm_mem)
{
	int r;
	
	r = kvm_create_vm(kvm);
	if (r < 0)
	        return r;
	r = kvm_arch_create(kvm, phys_mem_bytes, vm_mem);
	if (r < 0)
		return r;
	init_slots();
	r = kvm_create_default_phys_mem(kvm, phys_mem_bytes, vm_mem);
	if (r < 0)
	        return r;
	kvm_create_irqchip(kvm);

	return 0;
}


#ifdef KVM_CAP_USER_MEMORY

void *kvm_create_userspace_phys_mem(kvm_context_t kvm, unsigned long phys_start,
			unsigned long len, int log, int writable)
{
	int r;
	int prot = PROT_READ;
	void *ptr;
	struct kvm_userspace_memory_region memory = {
		.memory_size = len,
		.guest_phys_addr = phys_start,
		.flags = log ? KVM_MEM_LOG_DIRTY_PAGES : 0,
	};

	if (writable)
		prot |= PROT_WRITE;

	ptr = mmap(NULL, len, prot, MAP_ANONYMOUS | MAP_SHARED, -1, 0);
	if (ptr == MAP_FAILED) {
		fprintf(stderr, "create_userspace_phys_mem: %s", strerror(errno));
		return 0;
	}

	memset(ptr, 0, len);

	memory.userspace_addr = (unsigned long)ptr;
	memory.slot = get_free_slot(kvm);
	r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
	if (r == -1) {
		fprintf(stderr, "create_userspace_phys_mem: %s", strerror(errno));
		return 0;
	}
	register_slot(memory.slot, memory.guest_phys_addr, memory.memory_size,
		      1, memory.userspace_addr, memory.flags);

        return ptr;
}

#endif

void *kvm_create_phys_mem(kvm_context_t kvm, unsigned long phys_start,
			  unsigned long len, int log, int writable)
{
#ifdef KVM_CAP_USER_MEMORY
	int r;

	r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY);
	if (r > 0)
		return kvm_create_userspace_phys_mem(kvm, phys_start, len,
								log, writable);
	else
#endif
		return kvm_create_kernel_phys_mem(kvm, phys_start, len,
								log, writable);
}

int kvm_is_intersecting_mem(kvm_context_t kvm, unsigned long phys_start)
{
	return get_intersecting_slot(phys_start) != -1;
}

int kvm_is_allocated_mem(kvm_context_t kvm, unsigned long phys_start,
			 unsigned long len)
{
	int slot;

	slot = get_slot(phys_start);
	if (slot == -1)
		return 0;
	if (slots[slot].len == len)
		return 1;
	return 0;
}

int kvm_create_mem_hole(kvm_context_t kvm, unsigned long phys_start,
			unsigned long len)
{
#ifdef KVM_CAP_USER_MEMORY
	int slot;
	int r;
	struct kvm_userspace_memory_region rmslot;
	struct kvm_userspace_memory_region newslot1;
	struct kvm_userspace_memory_region newslot2;

	len = (len + PAGE_SIZE - 1) & PAGE_MASK;

	slot = get_intersecting_slot(phys_start);
	/* no need to create hole, as there is already hole */
	if (slot == -1)
		return 0;

	memset(&rmslot, 0, sizeof(struct kvm_userspace_memory_region));
	memset(&newslot1, 0, sizeof(struct kvm_userspace_memory_region));
	memset(&newslot2, 0, sizeof(struct kvm_userspace_memory_region));

	rmslot.guest_phys_addr = slots[slot].phys_addr;
	rmslot.slot = slot;

	newslot1.guest_phys_addr = slots[slot].phys_addr;
	newslot1.memory_size = phys_start - slots[slot].phys_addr;
	newslot1.slot = slot;
	newslot1.userspace_addr = slots[slot].userspace_addr;
	newslot1.flags = slots[slot].flags;

	newslot2.guest_phys_addr = newslot1.guest_phys_addr +
				   newslot1.memory_size + len;
	newslot2.memory_size = slots[slot].phys_addr +
			       slots[slot].len - newslot2.guest_phys_addr;
	newslot2.userspace_addr = newslot1.userspace_addr +
				  newslot1.memory_size;
	newslot2.slot = get_free_slot(kvm);
	newslot2.flags = newslot1.flags;

	r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &rmslot);
	if (r == -1) {
		fprintf(stderr, "kvm_create_mem_hole: %s\n", strerror(errno));
		return -1;
	}
	free_slot(slot);

	r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &newslot1);
	if (r == -1) {
		fprintf(stderr, "kvm_create_mem_hole: %s\n", strerror(errno));
		return -1;
	}
	register_slot(newslot1.slot, newslot1.guest_phys_addr,
		      newslot1.memory_size, 1, newslot1.userspace_addr,
		      newslot1.flags);

	r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &newslot2);
	if (r == -1) {
		fprintf(stderr, "kvm_create_mem_hole: %s\n", strerror(errno));
		return -1;
	}
	register_slot(newslot2.slot, newslot2.guest_phys_addr,
		      newslot2.memory_size, 1, newslot2.userspace_addr,
		      newslot2.flags);
#endif
	return 0;
}

int kvm_register_userspace_phys_mem(kvm_context_t kvm,
			unsigned long phys_start, void *userspace_addr,
			unsigned long len, int log)
{

#ifdef KVM_CAP_USER_MEMORY
	struct kvm_userspace_memory_region memory = {
		.memory_size = len,
		.guest_phys_addr = phys_start,
		.userspace_addr = (unsigned long)(intptr_t)userspace_addr,
		.flags = log ? KVM_MEM_LOG_DIRTY_PAGES : 0,
	};
	int r;

	memory.slot = get_free_slot(kvm);
	r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
	if (r == -1) {
		fprintf(stderr, "create_userspace_phys_mem: %s\n", strerror(errno));
		return -1;
	}
	register_slot(memory.slot, memory.guest_phys_addr, memory.memory_size,
		      1, memory.userspace_addr, memory.flags);
        return 0;
#else
	return -ENOSYS;
#endif
}


/* destroy/free a whole slot.
 * phys_start, len and slot are the params passed to kvm_create_phys_mem()
 */
void kvm_destroy_phys_mem(kvm_context_t kvm, unsigned long phys_start, 
			  unsigned long len)
{
	int slot;

	slot = get_slot(phys_start);

	if (slot >= KVM_MAX_NUM_MEM_REGIONS) {
		fprintf(stderr, "BUG: %s: invalid parameters (slot=%d)\n",
			__FUNCTION__, slot);
		return;
	}
	if (phys_start != slots[slot].phys_addr) {
		fprintf(stderr,
			"WARNING: %s: phys_start is 0x%lx expecting 0x%lx\n",
			__FUNCTION__, phys_start, slots[slot].phys_addr);
		phys_start = slots[slot].phys_addr;
	}
	kvm_create_phys_mem(kvm, phys_start, 0, 0, 0);
}

static int kvm_get_map(kvm_context_t kvm, int ioctl_num, int slot, void *buf)
{
	int r;
	struct kvm_dirty_log log = {
		.slot = slot,
	};

	log.dirty_bitmap = buf;

	r = ioctl(kvm->vm_fd, ioctl_num, &log);
	if (r == -1)
		return -errno;
	return 0;
}

int kvm_get_dirty_pages(kvm_context_t kvm, unsigned long phys_addr, void *buf)
{
	int slot;

	slot = get_slot(phys_addr);
	return kvm_get_map(kvm, KVM_GET_DIRTY_LOG, slot, buf);
}

#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
#define BITMAP_SIZE(m) (ALIGN(((m)/PAGE_SIZE), sizeof(long) * 8) / 8)

int kvm_get_dirty_pages_range(kvm_context_t kvm, unsigned long phys_addr,
			      unsigned long len, void *buf, void *opaque,
			      int (*cb)(unsigned long start, unsigned long len,
					void*bitmap, void *opaque))
{
	int i;
	int r;
	unsigned long end_addr = phys_addr + len;

	for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS; ++i) {
		if ((slots[i].len && slots[i].phys_addr >= phys_addr) &&
		    (slots[i].phys_addr + slots[i].len  <= end_addr)) {
			r = kvm_get_map(kvm, KVM_GET_DIRTY_LOG, i, buf);
			if (r)
				return r;
			r = cb(slots[i].phys_addr, slots[i].len, buf, opaque);
			if (r)
				return r;
		}
	}
	return 0;
}

#ifdef KVM_CAP_IRQCHIP

int kvm_set_irq_level(kvm_context_t kvm, int irq, int level)
{
	struct kvm_irq_level event;
	int r;

	if (!kvm->irqchip_in_kernel)
		return 0;
	event.level = level;
	event.irq = irq;
	r = ioctl(kvm->vm_fd, KVM_IRQ_LINE, &event);
	if (r == -1)
		perror("kvm_set_irq_level");
	return 1;
}

int kvm_get_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip)
{
	int r;

	if (!kvm->irqchip_in_kernel)
		return 0;
	r = ioctl(kvm->vm_fd, KVM_GET_IRQCHIP, chip);
	if (r == -1) {
		r = -errno;
		perror("kvm_get_irqchip\n");
	}
	return r;
}

int kvm_set_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip)
{
	int r;

	if (!kvm->irqchip_in_kernel)
		return 0;
	r = ioctl(kvm->vm_fd, KVM_SET_IRQCHIP, chip);
	if (r == -1) {
		r = -errno;
		perror("kvm_set_irqchip\n");
	}
	return r;
}

#endif

static int handle_io(kvm_context_t kvm, struct kvm_run *run, int vcpu)
{
	uint16_t addr = run->io.port;
	int r;
	int i;
	void *p = (void *)run + run->io.data_offset;

	for (i = 0; i < run->io.count; ++i) {
		switch (run->io.direction) {
		case KVM_EXIT_IO_IN:
			switch (run->io.size) {
			case 1:
				r = kvm->callbacks->inb(kvm->opaque, addr, p);
				break;
			case 2:
				r = kvm->callbacks->inw(kvm->opaque, addr, p);
				break;
			case 4:
				r = kvm->callbacks->inl(kvm->opaque, addr, p);
				break;
			default:
				fprintf(stderr, "bad I/O size %d\n", run->io.size);
				return -EMSGSIZE;
			}
			break;
		case KVM_EXIT_IO_OUT:
		    	switch (run->io.size) {
			case 1:
				r = kvm->callbacks->outb(kvm->opaque, addr,
						     *(uint8_t *)p);
				break;
			case 2:
				r = kvm->callbacks->outw(kvm->opaque, addr,
						     *(uint16_t *)p);
				break;
			case 4:
				r = kvm->callbacks->outl(kvm->opaque, addr,
						     *(uint32_t *)p);
				break;
			default:
				fprintf(stderr, "bad I/O size %d\n", run->io.size);
				return -EMSGSIZE;
			}
			break;
		default:
			fprintf(stderr, "bad I/O direction %d\n", run->io.direction);
			return -EPROTO;
		}

		p += run->io.size;
	}

	return 0;
}

int handle_debug(kvm_context_t kvm, int vcpu)
{
	return kvm->callbacks->debug(kvm->opaque, vcpu);
}

int kvm_get_regs(kvm_context_t kvm, int vcpu, struct kvm_regs *regs)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_REGS, regs);
}

int kvm_set_regs(kvm_context_t kvm, int vcpu, struct kvm_regs *regs)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_REGS, regs);
}

int kvm_get_fpu(kvm_context_t kvm, int vcpu, struct kvm_fpu *fpu)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_FPU, fpu);
}

int kvm_set_fpu(kvm_context_t kvm, int vcpu, struct kvm_fpu *fpu)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_FPU, fpu);
}

int kvm_get_sregs(kvm_context_t kvm, int vcpu, struct kvm_sregs *sregs)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_SREGS, sregs);
}

int kvm_set_sregs(kvm_context_t kvm, int vcpu, struct kvm_sregs *sregs)
{
    return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SREGS, sregs);
}

#ifdef KVM_CAP_MP_STATE
int kvm_get_mpstate(kvm_context_t kvm, int vcpu, struct kvm_mp_state *mp_state)
{
    int r;

    r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_MP_STATE);
    if (r > 0)
        return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_MP_STATE, mp_state);
    return -ENOSYS;
}

int kvm_set_mpstate(kvm_context_t kvm, int vcpu, struct kvm_mp_state *mp_state)
{
    int r;

    r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_MP_STATE);
    if (r > 0)
        return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_MP_STATE, mp_state);
    return -ENOSYS;
}
#endif

static int handle_mmio(kvm_context_t kvm, struct kvm_run *kvm_run)
{
	unsigned long addr = kvm_run->mmio.phys_addr;
	void *data = kvm_run->mmio.data;

	/* hack: Red Hat 7.1 generates these weird accesses. */
	if ((addr > 0xa0000-4 && addr <= 0xa0000) && kvm_run->mmio.len == 3)
	    return 0;

	if (kvm_run->mmio.is_write)
		return kvm->callbacks->mmio_write(kvm->opaque, addr, data,
					kvm_run->mmio.len);
	else
		return kvm->callbacks->mmio_read(kvm->opaque, addr, data,
					kvm_run->mmio.len);
}

int handle_io_window(kvm_context_t kvm)
{
	return kvm->callbacks->io_window(kvm->opaque);
}

int handle_halt(kvm_context_t kvm, int vcpu)
{
	return kvm->callbacks->halt(kvm->opaque, vcpu);
}

int handle_shutdown(kvm_context_t kvm, int vcpu)
{
	return kvm->callbacks->shutdown(kvm->opaque, vcpu);
}

int try_push_interrupts(kvm_context_t kvm)
{
	return kvm->callbacks->try_push_interrupts(kvm->opaque);
}

void post_kvm_run(kvm_context_t kvm, int vcpu)
{
	kvm->callbacks->post_kvm_run(kvm->opaque, vcpu);
}

int pre_kvm_run(kvm_context_t kvm, int vcpu)
{
	return kvm->callbacks->pre_kvm_run(kvm->opaque, vcpu);
}

int kvm_get_interrupt_flag(kvm_context_t kvm, int vcpu)
{
	struct kvm_run *run = kvm->run[vcpu];

	return run->if_flag;
}

int kvm_is_ready_for_interrupt_injection(kvm_context_t kvm, int vcpu)
{
	struct kvm_run *run = kvm->run[vcpu];

	return run->ready_for_interrupt_injection;
}

int kvm_run(kvm_context_t kvm, int vcpu)
{
	int r;
	int fd = kvm->vcpu_fd[vcpu];
	struct kvm_run *run = kvm->run[vcpu];

again:
	if (!kvm->irqchip_in_kernel)
		run->request_interrupt_window = try_push_interrupts(kvm);
	r = pre_kvm_run(kvm, vcpu);
	if (r)
	    return r;
	r = ioctl(fd, KVM_RUN, 0);

	if (r == -1 && errno != EINTR && errno != EAGAIN) {
		r = -errno;
		post_kvm_run(kvm, vcpu);
		fprintf(stderr, "kvm_run: %s\n", strerror(-r));
		return r;
	}

	post_kvm_run(kvm, vcpu);

	if (r == -1) {
		r = handle_io_window(kvm);
		goto more;
	}
	if (1) {
		switch (run->exit_reason) {
		case KVM_EXIT_UNKNOWN:
			fprintf(stderr, "unhandled vm exit: 0x%x vcpu_id %d\n",
				(unsigned)run->hw.hardware_exit_reason, vcpu);
			kvm_show_regs(kvm, vcpu);
			abort();
			break;
		case KVM_EXIT_FAIL_ENTRY:
			fprintf(stderr, "kvm_run: failed entry, reason %u\n", 
				(unsigned)run->fail_entry.hardware_entry_failure_reason & 0xffff);
			return -ENOEXEC;
			break;
		case KVM_EXIT_EXCEPTION:
			fprintf(stderr, "exception %d (%x)\n", 
			       run->ex.exception,
			       run->ex.error_code);
			kvm_show_regs(kvm, vcpu);
			kvm_show_code(kvm, vcpu);
			abort();
			break;
		case KVM_EXIT_IO:
			r = handle_io(kvm, run, vcpu);
			break;
		case KVM_EXIT_DEBUG:
			r = handle_debug(kvm, vcpu);
			break;
		case KVM_EXIT_MMIO:
			r = handle_mmio(kvm, run);
			break;
		case KVM_EXIT_HLT:
			r = handle_halt(kvm, vcpu);
			break;
		case KVM_EXIT_IRQ_WINDOW_OPEN:
			break;
		case KVM_EXIT_SHUTDOWN:
			r = handle_shutdown(kvm, vcpu);
			break;
		default:
			if (kvm_arch_run(run, kvm, vcpu)) {
				fprintf(stderr, "unhandled vm exit: 0x%x\n",
							run->exit_reason);
				kvm_show_regs(kvm, vcpu);
				abort();
			}
			break;
		}
	}
more:
	if (!r)
		goto again;
	return r;
}

int kvm_inject_irq(kvm_context_t kvm, int vcpu, unsigned irq)
{
	struct kvm_interrupt intr;

	intr.irq = irq;
	return ioctl(kvm->vcpu_fd[vcpu], KVM_INTERRUPT, &intr);
}

int kvm_guest_debug(kvm_context_t kvm, int vcpu, struct kvm_debug_guest *dbg)
{
	return ioctl(kvm->vcpu_fd[vcpu], KVM_DEBUG_GUEST, dbg);
}

int kvm_set_signal_mask(kvm_context_t kvm, int vcpu, const sigset_t *sigset)
{
	struct kvm_signal_mask *sigmask;
	int r;

	if (!sigset) {
		r = ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SIGNAL_MASK, NULL);
		if (r == -1)
			r = -errno;
		return r;
	}
	sigmask = malloc(sizeof(*sigmask) + sizeof(*sigset));
	if (!sigmask)
		return -ENOMEM;

	sigmask->len = 8;
	memcpy(sigmask->sigset, sigset, sizeof(*sigset));
	r = ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SIGNAL_MASK, sigmask);
	if (r == -1)
		r = -errno;
	free(sigmask);
	return r;
}

int kvm_irqchip_in_kernel(kvm_context_t kvm)
{
    return kvm->irqchip_in_kernel;
}

int kvm_pit_in_kernel(kvm_context_t kvm)
{
	return kvm->pit_in_kernel;
}