aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat-specialize.h
diff options
context:
space:
mode:
Diffstat (limited to 'fpu/softfloat-specialize.h')
-rw-r--r--fpu/softfloat-specialize.h72
1 files changed, 70 insertions, 2 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index 490245004..a1d489e42 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -41,6 +41,13 @@ these four paragraphs for those parts of this code that are retained.
#define SNAN_BIT_IS_ONE 0
#endif
+#if defined(TARGET_XTENSA)
+/* Define for architectures which deviate from IEEE in not supporting
+ * signaling NaNs (so all NaNs are treated as quiet).
+ */
+#define NO_SIGNALING_NANS 1
+#endif
+
/*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/
@@ -57,7 +64,8 @@ const float16 float16_default_nan = const_float16(0xFE00);
*----------------------------------------------------------------------------*/
#if defined(TARGET_SPARC)
const float32 float32_default_nan = const_float32(0x7FFFFFFF);
-#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
+#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
+ defined(TARGET_XTENSA)
const float32 float32_default_nan = const_float32(0x7FC00000);
#elif SNAN_BIT_IS_ONE
const float32 float32_default_nan = const_float32(0x7FBFFFFF);
@@ -127,6 +135,17 @@ typedef struct {
uint64_t high, low;
} commonNaNT;
+#ifdef NO_SIGNALING_NANS
+int float16_is_quiet_nan(float16 a_)
+{
+ return float16_is_any_nan(a_);
+}
+
+int float16_is_signaling_nan(float16 a_)
+{
+ return 0;
+}
+#else
/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
@@ -156,6 +175,7 @@ int float16_is_signaling_nan(float16 a_)
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#endif
}
+#endif
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the half-precision floating point value `a' is a
@@ -217,6 +237,17 @@ static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
}
}
+#ifdef NO_SIGNALING_NANS
+int float32_is_quiet_nan(float32 a_)
+{
+ return float32_is_any_nan(a_);
+}
+
+int float32_is_signaling_nan(float32 a_)
+{
+ return 0;
+}
+#else
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
@@ -246,6 +277,7 @@ int float32_is_signaling_nan( float32 a_ )
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
#endif
}
+#endif
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the single-precision floating point value `a' is a
@@ -372,7 +404,7 @@ static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
return 1;
}
}
-#elif defined(TARGET_PPC)
+#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
flag aIsLargerSignificand)
{
@@ -586,6 +618,17 @@ static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
}
}
+#ifdef NO_SIGNALING_NANS
+int float64_is_quiet_nan(float64 a_)
+{
+ return float64_is_any_nan(a_);
+}
+
+int float64_is_signaling_nan(float64 a_)
+{
+ return 0;
+}
+#else
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
@@ -619,6 +662,7 @@ int float64_is_signaling_nan( float64 a_ )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
#endif
}
+#endif
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the double-precision floating point value `a' is a
@@ -773,6 +817,17 @@ static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
}
}
+#ifdef NO_SIGNALING_NANS
+int floatx80_is_quiet_nan(floatx80 a_)
+{
+ return floatx80_is_any_nan(a_);
+}
+
+int floatx80_is_signaling_nan(floatx80 a_)
+{
+ return 0;
+}
+#else
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| quiet NaN; otherwise returns 0. This slightly differs from the same
@@ -816,6 +871,7 @@ int floatx80_is_signaling_nan( floatx80 a )
&& ( a.low == aLow );
#endif
}
+#endif
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the extended double-precision floating point value
@@ -929,6 +985,17 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
}
}
+#ifdef NO_SIGNALING_NANS
+int float128_is_quiet_nan(float128 a_)
+{
+ return float128_is_any_nan(a_);
+}
+
+int float128_is_signaling_nan(float128 a_)
+{
+ return 0;
+}
+#else
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
@@ -964,6 +1031,7 @@ int float128_is_signaling_nan( float128 a )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
#endif
}
+#endif
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the quadruple-precision floating point value `a' is