/* * Copyright (c) 2003-2007 Niels Provos * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef WIN32 #include #include #endif #include "event2/event-config.h" #include #include #ifdef _EVENT_HAVE_SYS_TIME_H #include #endif #include #ifndef WIN32 #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include "event2/event.h" #include "event2/event_struct.h" #include "event2/event_compat.h" #include "event2/tag.h" #include "event2/buffer.h" #include "event2/buffer_compat.h" #include "event2/util.h" #include "event-internal.h" #include "evthread-internal.h" #include "util-internal.h" #include "log-internal.h" #include "regress.h" #ifndef WIN32 #include "regress.gen.h" #endif evutil_socket_t pair[2]; int test_ok; int called; struct event_base *global_base; static char wbuf[4096]; static char rbuf[4096]; static int woff; static int roff; static int usepersist; static struct timeval tset; static struct timeval tcalled; #define TEST1 "this is a test" #define SECONDS 1 #ifndef SHUT_WR #define SHUT_WR 1 #endif #ifdef WIN32 #define write(fd,buf,len) send((fd),(buf),(int)(len),0) #define read(fd,buf,len) recv((fd),(buf),(int)(len),0) #endif struct basic_cb_args { struct event_base *eb; struct event *ev; unsigned int callcount; }; static void simple_read_cb(evutil_socket_t fd, short event, void *arg) { char buf[256]; int len; len = read(fd, buf, sizeof(buf)); if (len) { if (!called) { if (event_add(arg, NULL) == -1) exit(1); } } else if (called == 1) test_ok = 1; called++; } static void basic_read_cb(evutil_socket_t fd, short event, void *data) { char buf[256]; int len; struct basic_cb_args *arg = data; len = read(fd, buf, sizeof(buf)); if (len < 0) { tt_fail_perror("read (callback)"); } else { switch (arg->callcount++) { case 0: /* first call: expect to read data; cycle */ if (len > 0) return; tt_fail_msg("EOF before data read"); break; case 1: /* second call: expect EOF; stop */ if (len > 0) tt_fail_msg("not all data read on first cycle"); break; default: /* third call: should not happen */ tt_fail_msg("too many cycles"); } } event_del(arg->ev); event_base_loopexit(arg->eb, NULL); } static void dummy_read_cb(evutil_socket_t fd, short event, void *arg) { } static void simple_write_cb(evutil_socket_t fd, short event, void *arg) { int len; len = write(fd, TEST1, strlen(TEST1) + 1); if (len == -1) test_ok = 0; else test_ok = 1; } static void multiple_write_cb(evutil_socket_t fd, short event, void *arg) { struct event *ev = arg; int len; len = 128; if (woff + len >= (int)sizeof(wbuf)) len = sizeof(wbuf) - woff; len = write(fd, wbuf + woff, len); if (len == -1) { fprintf(stderr, "%s: write\n", __func__); if (usepersist) event_del(ev); return; } woff += len; if (woff >= (int)sizeof(wbuf)) { shutdown(fd, SHUT_WR); if (usepersist) event_del(ev); return; } if (!usepersist) { if (event_add(ev, NULL) == -1) exit(1); } } static void multiple_read_cb(evutil_socket_t fd, short event, void *arg) { struct event *ev = arg; int len; len = read(fd, rbuf + roff, sizeof(rbuf) - roff); if (len == -1) fprintf(stderr, "%s: read\n", __func__); if (len <= 0) { if (usepersist) event_del(ev); return; } roff += len; if (!usepersist) { if (event_add(ev, NULL) == -1) exit(1); } } static void timeout_cb(evutil_socket_t fd, short event, void *arg) { struct timeval tv; int diff; evutil_gettimeofday(&tcalled, NULL); if (evutil_timercmp(&tcalled, &tset, >)) evutil_timersub(&tcalled, &tset, &tv); else evutil_timersub(&tset, &tcalled, &tv); diff = tv.tv_sec*1000 + tv.tv_usec/1000 - SECONDS * 1000; if (diff < 0) diff = -diff; if (diff < 100) test_ok = 1; } struct both { struct event ev; int nread; }; static void combined_read_cb(evutil_socket_t fd, short event, void *arg) { struct both *both = arg; char buf[128]; int len; len = read(fd, buf, sizeof(buf)); if (len == -1) fprintf(stderr, "%s: read\n", __func__); if (len <= 0) return; both->nread += len; if (event_add(&both->ev, NULL) == -1) exit(1); } static void combined_write_cb(evutil_socket_t fd, short event, void *arg) { struct both *both = arg; char buf[128]; int len; len = sizeof(buf); if (len > both->nread) len = both->nread; memset(buf, 'q', len); len = write(fd, buf, len); if (len == -1) fprintf(stderr, "%s: write\n", __func__); if (len <= 0) { shutdown(fd, SHUT_WR); return; } both->nread -= len; if (event_add(&both->ev, NULL) == -1) exit(1); } /* These macros used to replicate the work of the legacy test wrapper code */ #define setup_test(x) do { \ if (!in_legacy_test_wrapper) { \ TT_FAIL(("Legacy test %s not wrapped properly", x)); \ return; \ } \ } while (0) #define cleanup_test() setup_test("cleanup") static void test_simpleread(void) { struct event ev; /* Very simple read test */ setup_test("Simple read: "); if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } shutdown(pair[0], SHUT_WR); event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); event_dispatch(); cleanup_test(); } static void test_simplewrite(void) { struct event ev; /* Very simple write test */ setup_test("Simple write: "); event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); event_dispatch(); cleanup_test(); } static void simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg) { if (++called == 2) test_ok = 1; } static void test_simpleread_multiple(void) { struct event one, two; /* Very simple read test */ setup_test("Simple read to multiple evens: "); if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } shutdown(pair[0], SHUT_WR); event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL); if (event_add(&one, NULL) == -1) exit(1); event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL); if (event_add(&two, NULL) == -1) exit(1); event_dispatch(); cleanup_test(); } static int have_closed = 0; static int premature_event = 0; static void simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr) { evutil_socket_t **fds = ptr; TT_BLATHER(("Closing")); evutil_closesocket(*fds[0]); evutil_closesocket(*fds[1]); *fds[0] = -1; *fds[1] = -1; have_closed = 1; } static void record_event_cb(evutil_socket_t s, short what, void *ptr) { short *whatp = ptr; if (!have_closed) premature_event = 1; *whatp = what; TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s)); } static void test_simpleclose(void *ptr) { /* Test that a close of FD is detected as a read and as a write. */ struct event_base *base = event_base_new(); evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1}; evutil_socket_t *to_close[2]; struct event *rev=NULL, *wev=NULL, *closeev=NULL; struct timeval tv; short got_read_on_close = 0, got_write_on_close = 0; char buf[1024]; memset(buf, 99, sizeof(buf)); #ifdef WIN32 #define LOCAL_SOCKETPAIR_AF AF_INET #else #define LOCAL_SOCKETPAIR_AF AF_UNIX #endif if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0) TT_DIE(("socketpair: %s", strerror(errno))); if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0) TT_DIE(("socketpair: %s", strerror(errno))); if (evutil_make_socket_nonblocking(pair1[1]) < 0) TT_DIE(("make_socket_nonblocking")); if (evutil_make_socket_nonblocking(pair2[1]) < 0) TT_DIE(("make_socket_nonblocking")); /** Stuff pair2[1] full of data, until write fails */ while (1) { int r = write(pair2[1], buf, sizeof(buf)); if (r<0) { int err = evutil_socket_geterror(pair2[1]); if (! EVUTIL_ERR_RW_RETRIABLE(err)) TT_DIE(("write failed strangely: %s", evutil_socket_error_to_string(err))); break; } } to_close[0] = &pair1[0]; to_close[1] = &pair2[0]; closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb, to_close); rev = event_new(base, pair1[1], EV_READ, record_event_cb, &got_read_on_close); TT_BLATHER(("Waiting for read on %d", (int)pair1[1])); wev = event_new(base, pair2[1], EV_WRITE, record_event_cb, &got_write_on_close); TT_BLATHER(("Waiting for write on %d", (int)pair2[1])); tv.tv_sec = 0; tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make * sure we get a read event. */ event_add(closeev, &tv); event_add(rev, NULL); event_add(wev, NULL); /* Don't let the test go on too long. */ tv.tv_sec = 0; tv.tv_usec = 200*1000; event_base_loopexit(base, &tv); event_base_loop(base, 0); tt_int_op(got_read_on_close, ==, EV_READ); tt_int_op(got_write_on_close, ==, EV_WRITE); tt_int_op(premature_event, ==, 0); end: if (pair1[0] >= 0) evutil_closesocket(pair1[0]); if (pair1[1] >= 0) evutil_closesocket(pair1[1]); if (pair2[0] >= 0) evutil_closesocket(pair2[0]); if (pair2[1] >= 0) evutil_closesocket(pair2[1]); if (rev) event_free(rev); if (wev) event_free(wev); if (closeev) event_free(closeev); if (base) event_base_free(base); } static void test_multiple(void) { struct event ev, ev2; int i; /* Multiple read and write test */ setup_test("Multiple read/write: "); memset(rbuf, 0, sizeof(rbuf)); for (i = 0; i < (int)sizeof(wbuf); i++) wbuf[i] = i; roff = woff = 0; usepersist = 0; event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2); if (event_add(&ev2, NULL) == -1) exit(1); event_dispatch(); if (roff == woff) test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; cleanup_test(); } static void test_persistent(void) { struct event ev, ev2; int i; /* Multiple read and write test with persist */ setup_test("Persist read/write: "); memset(rbuf, 0, sizeof(rbuf)); for (i = 0; i < (int)sizeof(wbuf); i++) wbuf[i] = i; roff = woff = 0; usepersist = 1; event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2); if (event_add(&ev2, NULL) == -1) exit(1); event_dispatch(); if (roff == woff) test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; cleanup_test(); } static void test_combined(void) { struct both r1, r2, w1, w2; setup_test("Combined read/write: "); memset(&r1, 0, sizeof(r1)); memset(&r2, 0, sizeof(r2)); memset(&w1, 0, sizeof(w1)); memset(&w2, 0, sizeof(w2)); w1.nread = 4096; w2.nread = 8192; event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1); event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1); event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2); event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2); tt_assert(event_add(&r1.ev, NULL) != -1); tt_assert(!event_add(&w1.ev, NULL)); tt_assert(!event_add(&r2.ev, NULL)); tt_assert(!event_add(&w2.ev, NULL)); event_dispatch(); if (r1.nread == 8192 && r2.nread == 4096) test_ok = 1; end: cleanup_test(); } static void test_simpletimeout(void) { struct timeval tv; struct event ev; setup_test("Simple timeout: "); tv.tv_usec = 0; tv.tv_sec = SECONDS; evtimer_set(&ev, timeout_cb, NULL); evtimer_add(&ev, &tv); evutil_gettimeofday(&tset, NULL); event_dispatch(); cleanup_test(); } static void periodic_timeout_cb(evutil_socket_t fd, short event, void *arg) { int *count = arg; (*count)++; if (*count == 6) { /* call loopexit only once - on slow machines(?), it is * apparently possible for this to get called twice. */ test_ok = 1; event_base_loopexit(global_base, NULL); } } static void test_persistent_timeout(void) { struct timeval tv; struct event ev; int count = 0; evutil_timerclear(&tv); tv.tv_usec = 10000; event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST, periodic_timeout_cb, &count); event_add(&ev, &tv); event_dispatch(); event_del(&ev); } static void test_persistent_timeout_jump(void *ptr) { struct basic_test_data *data = ptr; struct event ev; int count = 0; struct timeval msec100 = { 0, 100 * 1000 }; struct timeval msec50 = { 0, 50 * 1000 }; event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count); event_add(&ev, &msec100); /* Wait for a bit */ #ifdef _WIN32 Sleep(1000); #else sleep(1); #endif event_base_loopexit(data->base, &msec50); event_base_dispatch(data->base); tt_int_op(count, ==, 1); end: event_del(&ev); } struct persist_active_timeout_called { int n; short events[16]; struct timeval tvs[16]; }; static void activate_cb(evutil_socket_t fd, short event, void *arg) { struct event *ev = arg; event_active(ev, EV_READ, 1); } static void persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg) { struct persist_active_timeout_called *c = arg; if (c->n < 15) { c->events[c->n] = event; evutil_gettimeofday(&c->tvs[c->n], NULL); ++c->n; } } static void test_persistent_active_timeout(void *ptr) { struct timeval tv, tv2, tv_exit, start; struct event ev; struct persist_active_timeout_called res; struct basic_test_data *data = ptr; struct event_base *base = data->base; memset(&res, 0, sizeof(res)); tv.tv_sec = 0; tv.tv_usec = 200 * 1000; event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST, persist_active_timeout_cb, &res); event_add(&ev, &tv); tv2.tv_sec = 0; tv2.tv_usec = 100 * 1000; event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2); tv_exit.tv_sec = 0; tv_exit.tv_usec = 600 * 1000; event_base_loopexit(base, &tv_exit); event_base_assert_ok(base); evutil_gettimeofday(&start, NULL); event_base_dispatch(base); event_base_assert_ok(base); tt_int_op(res.n, ==, 3); tt_int_op(res.events[0], ==, EV_READ); tt_int_op(res.events[1], ==, EV_TIMEOUT); tt_int_op(res.events[2], ==, EV_TIMEOUT); test_timeval_diff_eq(&start, &res.tvs[0], 100); test_timeval_diff_eq(&start, &res.tvs[1], 300); test_timeval_diff_eq(&start, &res.tvs[2], 500); end: event_del(&ev); } struct common_timeout_info { struct event ev; struct timeval called_at; int which; int count; }; static void common_timeout_cb(evutil_socket_t fd, short event, void *arg) { struct common_timeout_info *ti = arg; ++ti->count; evutil_gettimeofday(&ti->called_at, NULL); if (ti->count >= 6) event_del(&ti->ev); } static void test_common_timeout(void *ptr) { struct basic_test_data *data = ptr; struct event_base *base = data->base; int i; struct common_timeout_info info[100]; struct timeval now; struct timeval tmp_100_ms = { 0, 100*1000 }; struct timeval tmp_200_ms = { 0, 200*1000 }; const struct timeval *ms_100, *ms_200; ms_100 = event_base_init_common_timeout(base, &tmp_100_ms); ms_200 = event_base_init_common_timeout(base, &tmp_200_ms); tt_assert(ms_100); tt_assert(ms_200); tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms), ==, ms_200); tt_int_op(ms_100->tv_sec, ==, 0); tt_int_op(ms_200->tv_sec, ==, 0); tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000); tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000); memset(info, 0, sizeof(info)); for (i=0; i<100; ++i) { info[i].which = i; event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST, common_timeout_cb, &info[i]); if (i % 2) { event_add(&info[i].ev, ms_100); } else { event_add(&info[i].ev, ms_200); } } event_base_assert_ok(base); event_base_dispatch(base); evutil_gettimeofday(&now, NULL); event_base_assert_ok(base); for (i=0; i<10; ++i) { struct timeval tmp; int ms_diff; tt_int_op(info[i].count, ==, 6); evutil_timersub(&now, &info[i].called_at, &tmp); ms_diff = tmp.tv_usec/1000 + tmp.tv_sec*1000; if (i % 2) { tt_int_op(ms_diff, >, 500); tt_int_op(ms_diff, <, 700); } else { tt_int_op(ms_diff, >, -100); tt_int_op(ms_diff, <, 100); } } /* Make sure we can free the base with some events in. */ for (i=0; i<100; ++i) { if (i % 2) { event_add(&info[i].ev, ms_100); } else { event_add(&info[i].ev, ms_200); } } end: event_base_free(data->base); /* need to do this here before info is * out-of-scope */ data->base = NULL; } #ifndef WIN32 static void signal_cb(evutil_socket_t fd, short event, void *arg); #define current_base event_global_current_base_ extern struct event_base *current_base; static void child_signal_cb(evutil_socket_t fd, short event, void *arg) { struct timeval tv; int *pint = arg; *pint = 1; tv.tv_usec = 500000; tv.tv_sec = 0; event_loopexit(&tv); } static void test_fork(void) { int status, got_sigchld = 0; struct event ev, sig_ev; pid_t pid; setup_test("After fork: "); tt_assert(current_base); evthread_make_base_notifiable(current_base); if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld); evsignal_add(&sig_ev, NULL); event_base_assert_ok(current_base); TT_BLATHER(("Before fork")); if ((pid = regress_fork()) == 0) { /* in the child */ TT_BLATHER(("In child, before reinit")); event_base_assert_ok(current_base); if (event_reinit(current_base) == -1) { fprintf(stdout, "FAILED (reinit)\n"); exit(1); } TT_BLATHER(("After reinit")); event_base_assert_ok(current_base); TT_BLATHER(("After assert-ok")); evsignal_del(&sig_ev); called = 0; event_dispatch(); event_base_free(current_base); /* we do not send an EOF; simple_read_cb requires an EOF * to set test_ok. we just verify that the callback was * called. */ exit(test_ok != 0 || called != 2 ? -2 : 76); } /* wait for the child to read the data */ sleep(1); if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } TT_BLATHER(("Before waitpid")); if (waitpid(pid, &status, 0) == -1) { fprintf(stdout, "FAILED (fork)\n"); exit(1); } TT_BLATHER(("After waitpid")); if (WEXITSTATUS(status) != 76) { fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status)); exit(1); } /* test that the current event loop still works */ if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { fprintf(stderr, "%s: write\n", __func__); } shutdown(pair[0], SHUT_WR); event_dispatch(); if (!got_sigchld) { fprintf(stdout, "FAILED (sigchld)\n"); exit(1); } evsignal_del(&sig_ev); end: cleanup_test(); } static void signal_cb_sa(int sig) { test_ok = 2; } static void signal_cb(evutil_socket_t fd, short event, void *arg) { struct event *ev = arg; evsignal_del(ev); test_ok = 1; } static void test_simplesignal(void) { struct event ev; struct itimerval itv; setup_test("Simple signal: "); evsignal_set(&ev, SIGALRM, signal_cb, &ev); evsignal_add(&ev, NULL); /* find bugs in which operations are re-ordered */ evsignal_del(&ev); evsignal_add(&ev, NULL); memset(&itv, 0, sizeof(itv)); itv.it_value.tv_sec = 1; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) goto skip_simplesignal; event_dispatch(); skip_simplesignal: if (evsignal_del(&ev) == -1) test_ok = 0; cleanup_test(); } static void test_multiplesignal(void) { struct event ev_one, ev_two; struct itimerval itv; setup_test("Multiple signal: "); evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one); evsignal_add(&ev_one, NULL); evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two); evsignal_add(&ev_two, NULL); memset(&itv, 0, sizeof(itv)); itv.it_value.tv_sec = 1; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) goto skip_simplesignal; event_dispatch(); skip_simplesignal: if (evsignal_del(&ev_one) == -1) test_ok = 0; if (evsignal_del(&ev_two) == -1) test_ok = 0; cleanup_test(); } static void test_immediatesignal(void) { struct event ev; test_ok = 0; evsignal_set(&ev, SIGUSR1, signal_cb, &ev); evsignal_add(&ev, NULL); raise(SIGUSR1); event_loop(EVLOOP_NONBLOCK); evsignal_del(&ev); cleanup_test(); } static void test_signal_dealloc(void) { /* make sure that evsignal_event is event_del'ed and pipe closed */ struct event ev; struct event_base *base = event_init(); evsignal_set(&ev, SIGUSR1, signal_cb, &ev); evsignal_add(&ev, NULL); evsignal_del(&ev); event_base_free(base); /* If we got here without asserting, we're fine. */ test_ok = 1; cleanup_test(); } static void test_signal_pipeloss(void) { /* make sure that the base1 pipe is closed correctly. */ struct event_base *base1, *base2; int pipe1; test_ok = 0; base1 = event_init(); pipe1 = base1->sig.ev_signal_pair[0]; base2 = event_init(); event_base_free(base2); event_base_free(base1); if (close(pipe1) != -1 || errno!=EBADF) { /* fd must be closed, so second close gives -1, EBADF */ printf("signal pipe not closed. "); test_ok = 0; } else { test_ok = 1; } cleanup_test(); } /* * make two bases to catch signals, use both of them. this only works * for event mechanisms that use our signal pipe trick. kqueue handles * signals internally, and all interested kqueues get all the signals. */ static void test_signal_switchbase(void) { struct event ev1, ev2; struct event_base *base1, *base2; int is_kqueue; test_ok = 0; base1 = event_init(); base2 = event_init(); is_kqueue = !strcmp(event_get_method(),"kqueue"); evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1); evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2); if (event_base_set(base1, &ev1) || event_base_set(base2, &ev2) || event_add(&ev1, NULL) || event_add(&ev2, NULL)) { fprintf(stderr, "%s: cannot set base, add\n", __func__); exit(1); } tt_ptr_op(event_get_base(&ev1), ==, base1); tt_ptr_op(event_get_base(&ev2), ==, base2); test_ok = 0; /* can handle signal before loop is called */ raise(SIGUSR1); event_base_loop(base2, EVLOOP_NONBLOCK); if (is_kqueue) { if (!test_ok) goto end; test_ok = 0; } event_base_loop(base1, EVLOOP_NONBLOCK); if (test_ok && !is_kqueue) { test_ok = 0; /* set base1 to handle signals */ event_base_loop(base1, EVLOOP_NONBLOCK); raise(SIGUSR1); event_base_loop(base1, EVLOOP_NONBLOCK); event_base_loop(base2, EVLOOP_NONBLOCK); } end: event_base_free(base1); event_base_free(base2); cleanup_test(); } /* * assert that a signal event removed from the event queue really is * removed - with no possibility of it's parent handler being fired. */ static void test_signal_assert(void) { struct event ev; struct event_base *base = event_init(); test_ok = 0; /* use SIGCONT so we don't kill ourselves when we signal to nowhere */ evsignal_set(&ev, SIGCONT, signal_cb, &ev); evsignal_add(&ev, NULL); /* * if evsignal_del() fails to reset the handler, it's current handler * will still point to evsig_handler(). */ evsignal_del(&ev); raise(SIGCONT); #if 0 /* only way to verify we were in evsig_handler() */ /* XXXX Now there's no longer a good way. */ if (base->sig.evsig_caught) test_ok = 0; else test_ok = 1; #else test_ok = 1; #endif event_base_free(base); cleanup_test(); return; } /* * assert that we restore our previous signal handler properly. */ static void test_signal_restore(void) { struct event ev; struct event_base *base = event_init(); #ifdef _EVENT_HAVE_SIGACTION struct sigaction sa; #endif test_ok = 0; #ifdef _EVENT_HAVE_SIGACTION sa.sa_handler = signal_cb_sa; sa.sa_flags = 0x0; sigemptyset(&sa.sa_mask); if (sigaction(SIGUSR1, &sa, NULL) == -1) goto out; #else if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR) goto out; #endif evsignal_set(&ev, SIGUSR1, signal_cb, &ev); evsignal_add(&ev, NULL); evsignal_del(&ev); raise(SIGUSR1); /* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */ if (test_ok != 2) test_ok = 0; out: event_base_free(base); cleanup_test(); return; } static void signal_cb_swp(int sig, short event, void *arg) { called++; if (called < 5) raise(sig); else event_loopexit(NULL); } static void timeout_cb_swp(evutil_socket_t fd, short event, void *arg) { if (called == -1) { struct timeval tv = {5, 0}; called = 0; evtimer_add((struct event *)arg, &tv); raise(SIGUSR1); return; } test_ok = 0; event_loopexit(NULL); } static void test_signal_while_processing(void) { struct event_base *base = event_init(); struct event ev, ev_timer; struct timeval tv = {0, 0}; setup_test("Receiving a signal while processing other signal: "); called = -1; test_ok = 1; signal_set(&ev, SIGUSR1, signal_cb_swp, NULL); signal_add(&ev, NULL); evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer); evtimer_add(&ev_timer, &tv); event_dispatch(); event_base_free(base); cleanup_test(); return; } #endif static void test_free_active_base(void *ptr) { struct basic_test_data *data = ptr; struct event_base *base1; struct event ev1; base1 = event_init(); if (base1) { event_assign(&ev1, base1, data->pair[1], EV_READ, dummy_read_cb, NULL); event_add(&ev1, NULL); event_base_free(base1); /* should not crash */ } else { tt_fail_msg("failed to create event_base for test"); } base1 = event_init(); tt_assert(base1); event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL); event_active(&ev1, EV_READ, 1); event_base_free(base1); end: ; } static void test_manipulate_active_events(void *ptr) { struct basic_test_data *data = ptr; struct event_base *base = data->base; struct event ev1; event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL); /* Make sure an active event is pending. */ event_active(&ev1, EV_READ, 1); tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), ==, EV_READ); /* Make sure that activating an event twice works. */ event_active(&ev1, EV_WRITE, 1); tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), ==, EV_READ|EV_WRITE); end: event_del(&ev1); } static void test_bad_assign(void *ptr) { struct event ev; int r; /* READ|SIGNAL is not allowed */ r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL); tt_int_op(r,==,-1); end: ; } static int reentrant_cb_run = 0; static void bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr) { struct event_base *base = ptr; int r; reentrant_cb_run = 1; /* This reentrant call to event_base_loop should be detected and * should fail */ r = event_base_loop(base, 0); tt_int_op(r, ==, -1); end: ; } static void test_bad_reentrant(void *ptr) { struct basic_test_data *data = ptr; struct event_base *base = data->base; struct event ev; int r; event_assign(&ev, base, -1, 0, bad_reentrant_run_loop_cb, base); event_active(&ev, EV_WRITE, 1); r = event_base_loop(base, 0); tt_int_op(r, ==, 1); tt_int_op(reentrant_cb_run, ==, 1); end: ; } static void test_event_base_new(void *ptr) { struct basic_test_data *data = ptr; struct event_base *base = 0; struct event ev1; struct basic_cb_args args; int towrite = (int)strlen(TEST1)+1; int len = write(data->pair[0], TEST1, towrite); if (len < 0) tt_abort_perror("initial write"); else if (len != towrite) tt_abort_printf(("initial write fell short (%d of %d bytes)", len, towrite)); if (shutdown(data->pair[0], SHUT_WR)) tt_abort_perror("initial write shutdown"); base = event_base_new(); if (!base) tt_abort_msg("failed to create event base"); args.eb = base; args.ev = &ev1; args.callcount = 0; event_assign(&ev1, base, data->pair[1], EV_READ|EV_PERSIST, basic_read_cb, &args); if (event_add(&ev1, NULL)) tt_abort_perror("initial event_add"); if (event_base_loop(base, 0)) tt_abort_msg("unsuccessful exit from event loop"); end: if (base) event_base_free(base); } static void test_loopexit(void) { struct timeval tv, tv_start, tv_end; struct event ev; setup_test("Loop exit: "); tv.tv_usec = 0; tv.tv_sec = 60*60*24; evtimer_set(&ev, timeout_cb, NULL); evtimer_add(&ev, &tv); tv.tv_usec = 0; tv.tv_sec = 1; event_loopexit(&tv); evutil_gettimeofday(&tv_start, NULL); event_dispatch(); evutil_gettimeofday(&tv_end, NULL); evutil_timersub(&tv_end, &tv_start, &tv_end); evtimer_del(&ev); tt_assert(event_base_got_exit(global_base)); tt_assert(!event_base_got_break(global_base)); if (tv.tv_sec < 2) test_ok = 1; end: cleanup_test(); } static void test_loopexit_multiple(void) { struct timeval tv; struct event_base *base; setup_test("Loop Multiple exit: "); base = event_base_new(); tv.tv_usec = 0; tv.tv_sec = 1; event_base_loopexit(base, &tv); tv.tv_usec = 0; tv.tv_sec = 2; event_base_loopexit(base, &tv); event_base_dispatch(base); tt_assert(event_base_got_exit(base)); tt_assert(!event_base_got_break(base)); event_base_free(base); test_ok = 1; end: cleanup_test(); } static void break_cb(evutil_socket_t fd, short events, void *arg) { test_ok = 1; event_loopbreak(); } static void fail_cb(evutil_socket_t fd, short events, void *arg) { test_ok = 0; } static void test_loopbreak(void) { struct event ev1, ev2; struct timeval tv; setup_test("Loop break: "); tv.tv_sec = 0; tv.tv_usec = 0; evtimer_set(&ev1, break_cb, NULL); evtimer_add(&ev1, &tv); evtimer_set(&ev2, fail_cb, NULL); evtimer_add(&ev2, &tv); event_dispatch(); tt_assert(!event_base_got_exit(global_base)); tt_assert(event_base_got_break(global_base)); evtimer_del(&ev1); evtimer_del(&ev2); end: cleanup_test(); } static struct event *readd_test_event_last_added = NULL; static void re_add_read_cb(evutil_socket_t fd, short event, void *arg) { char buf[256]; struct event *ev_other = arg; readd_test_event_last_added = ev_other; if (read(fd, buf, sizeof(buf)) < 0) { tt_fail_perror("read"); } event_add(ev_other, NULL); ++test_ok; } static void test_nonpersist_readd(void) { struct event ev1, ev2; setup_test("Re-add nonpersistent events: "); event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2); event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1); if (write(pair[0], "Hello", 5) < 0) { tt_fail_perror("write(pair[0])"); } if (write(pair[1], "Hello", 5) < 0) { tt_fail_perror("write(pair[1])\n"); } if (event_add(&ev1, NULL) == -1 || event_add(&ev2, NULL) == -1) { test_ok = 0; } if (test_ok != 0) exit(1); event_loop(EVLOOP_ONCE); if (test_ok != 2) exit(1); /* At this point, we executed both callbacks. Whichever one got * called first added the second, but the second then immediately got * deleted before its callback was called. At this point, though, it * re-added the first. */ if (!readd_test_event_last_added) { test_ok = 0; } else if (readd_test_event_last_added == &ev1) { if (!event_pending(&ev1, EV_READ, NULL) || event_pending(&ev2, EV_READ, NULL)) test_ok = 0; } else { if (event_pending(&ev1, EV_READ, NULL) || !event_pending(&ev2, EV_READ, NULL)) test_ok = 0; } event_del(&ev1); event_del(&ev2); cleanup_test(); } struct test_pri_event { struct event ev; int count; }; static void test_priorities_cb(evutil_socket_t fd, short what, void *arg) { struct test_pri_event *pri = arg; struct timeval tv; if (pri->count == 3) { event_loopexit(NULL); return; } pri->count++; evutil_timerclear(&tv); event_add(&pri->ev, &tv); } static void test_priorities_impl(int npriorities) { struct test_pri_event one, two; struct timeval tv; TT_BLATHER(("Testing Priorities %d: ", npriorities)); event_base_priority_init(global_base, npriorities); memset(&one, 0, sizeof(one)); memset(&two, 0, sizeof(two)); timeout_set(&one.ev, test_priorities_cb, &one); if (event_priority_set(&one.ev, 0) == -1) { fprintf(stderr, "%s: failed to set priority", __func__); exit(1); } timeout_set(&two.ev, test_priorities_cb, &two); if (event_priority_set(&two.ev, npriorities - 1) == -1) { fprintf(stderr, "%s: failed to set priority", __func__); exit(1); } evutil_timerclear(&tv); if (event_add(&one.ev, &tv) == -1) exit(1); if (event_add(&two.ev, &tv) == -1) exit(1); event_dispatch(); event_del(&one.ev); event_del(&two.ev); if (npriorities == 1) { if (one.count == 3 && two.count == 3) test_ok = 1; } else if (npriorities == 2) { /* Two is called once because event_loopexit is priority 1 */ if (one.count == 3 && two.count == 1) test_ok = 1; } else { if (one.count == 3 && two.count == 0) test_ok = 1; } } static void test_priorities(void) { test_priorities_impl(1); if (test_ok) test_priorities_impl(2); if (test_ok) test_priorities_impl(3); } /* priority-active-inversion: activate a higher-priority event, and make sure * it keeps us from running a lower-priority event first. */ static int n_pai_calls = 0; static struct event pai_events[3]; static void prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg) { int *call_order = arg; *call_order = n_pai_calls++; if (n_pai_calls == 1) { /* This should activate later, even though it shares a priority with us. */ event_active(&pai_events[1], EV_READ, 1); /* This should activate next, since its priority is higher, even though we activated it second. */ event_active(&pai_events[2], EV_TIMEOUT, 1); } } static void test_priority_active_inversion(void *data_) { struct basic_test_data *data = data_; struct event_base *base = data->base; int call_order[3]; int i; tt_int_op(event_base_priority_init(base, 8), ==, 0); n_pai_calls = 0; memset(call_order, 0, sizeof(call_order)); for (i=0;i<3;++i) { event_assign(&pai_events[i], data->base, -1, 0, prio_active_inversion_cb, &call_order[i]); } event_priority_set(&pai_events[0], 4); event_priority_set(&pai_events[1], 4); event_priority_set(&pai_events[2], 0); event_active(&pai_events[0], EV_WRITE, 1); event_base_dispatch(base); tt_int_op(n_pai_calls, ==, 3); tt_int_op(call_order[0], ==, 0); tt_int_op(call_order[1], ==, 2); tt_int_op(call_order[2], ==, 1); end: ; } static void test_multiple_cb(evutil_socket_t fd, short event, void *arg) { if (event & EV_READ) test_ok |= 1; else if (event & EV_WRITE) test_ok |= 2; } static void test_multiple_events_for_same_fd(void) { struct event e1, e2; setup_test("Multiple events for same fd: "); event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL); event_add(&e1, NULL); event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL); event_add(&e2, NULL); event_loop(EVLOOP_ONCE); event_del(&e2); if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } event_loop(EVLOOP_ONCE); event_del(&e1); if (test_ok != 3) test_ok = 0; cleanup_test(); } int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf); int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf); int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number); int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf); static void read_once_cb(evutil_socket_t fd, short event, void *arg) { char buf[256]; int len; len = read(fd, buf, sizeof(buf)); if (called) { test_ok = 0; } else if (len) { /* Assumes global pair[0] can be used for writing */ if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); test_ok = 0; } else { test_ok = 1; } } called++; } static void test_want_only_once(void) { struct event ev; struct timeval tv; /* Very simple read test */ setup_test("Want read only once: "); if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } /* Setup the loop termination */ evutil_timerclear(&tv); tv.tv_sec = 1; event_loopexit(&tv); event_set(&ev, pair[1], EV_READ, read_once_cb, &ev); if (event_add(&ev, NULL) == -1) exit(1); event_dispatch(); cleanup_test(); } #define TEST_MAX_INT 6 static void evtag_int_test(void *ptr) { struct evbuffer *tmp = evbuffer_new(); ev_uint32_t integers[TEST_MAX_INT] = { 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 }; ev_uint32_t integer; ev_uint64_t big_int; int i; evtag_init(); for (i = 0; i < TEST_MAX_INT; i++) { int oldlen, newlen; oldlen = (int)EVBUFFER_LENGTH(tmp); evtag_encode_int(tmp, integers[i]); newlen = (int)EVBUFFER_LENGTH(tmp); TT_BLATHER(("encoded 0x%08x with %d bytes", (unsigned)integers[i], newlen - oldlen)); big_int = integers[i]; big_int *= 1000000000; /* 1 billion */ evtag_encode_int64(tmp, big_int); } for (i = 0; i < TEST_MAX_INT; i++) { tt_int_op(evtag_decode_int(&integer, tmp), !=, -1); tt_uint_op(integer, ==, integers[i]); tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1); tt_assert((big_int / 1000000000) == integers[i]); } tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); end: evbuffer_free(tmp); } static void evtag_fuzz(void *ptr) { u_char buffer[4096]; struct evbuffer *tmp = evbuffer_new(); struct timeval tv; int i, j; int not_failed = 0; evtag_init(); for (j = 0; j < 100; j++) { for (i = 0; i < (int)sizeof(buffer); i++) buffer[i] = rand(); evbuffer_drain(tmp, -1); evbuffer_add(tmp, buffer, sizeof(buffer)); if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) not_failed++; } /* The majority of decodes should fail */ tt_int_op(not_failed, <, 10); /* Now insert some corruption into the tag length field */ evbuffer_drain(tmp, -1); evutil_timerclear(&tv); tv.tv_sec = 1; evtag_marshal_timeval(tmp, 0, &tv); evbuffer_add(tmp, buffer, sizeof(buffer)); ((char *)EVBUFFER_DATA(tmp))[1] = '\xff'; if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) { tt_abort_msg("evtag_unmarshal_timeval should have failed"); } end: evbuffer_free(tmp); } static void evtag_tag_encoding(void *ptr) { struct evbuffer *tmp = evbuffer_new(); ev_uint32_t integers[TEST_MAX_INT] = { 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 }; ev_uint32_t integer; int i; evtag_init(); for (i = 0; i < TEST_MAX_INT; i++) { int oldlen, newlen; oldlen = (int)EVBUFFER_LENGTH(tmp); evtag_encode_tag(tmp, integers[i]); newlen = (int)EVBUFFER_LENGTH(tmp); TT_BLATHER(("encoded 0x%08x with %d bytes", (unsigned)integers[i], newlen - oldlen)); } for (i = 0; i < TEST_MAX_INT; i++) { tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1); tt_uint_op(integer, ==, integers[i]); } tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); end: evbuffer_free(tmp); } static void evtag_test_peek(void *ptr) { struct evbuffer *tmp = evbuffer_new(); ev_uint32_t u32; evtag_marshal_int(tmp, 30, 0); evtag_marshal_string(tmp, 40, "Hello world"); tt_int_op(evtag_peek(tmp, &u32), ==, 1); tt_int_op(u32, ==, 30); tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); tt_int_op(u32, ==, 1+1+1); tt_int_op(evtag_consume(tmp), ==, 0); tt_int_op(evtag_peek(tmp, &u32), ==, 1); tt_int_op(u32, ==, 40); tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); tt_int_op(u32, ==, 1+1+11); tt_int_op(evtag_payload_length(tmp, &u32), ==, 0); tt_int_op(u32, ==, 11); end: evbuffer_free(tmp); } static void test_methods(void *ptr) { const char **methods = event_get_supported_methods(); struct event_config *cfg = NULL; struct event_base *base = NULL; const char *backend; int n_methods = 0; tt_assert(methods); backend = methods[0]; while (*methods != NULL) { TT_BLATHER(("Support method: %s", *methods)); ++methods; ++n_methods; } cfg = event_config_new(); assert(cfg != NULL); tt_int_op(event_config_avoid_method(cfg, backend), ==, 0); event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); base = event_base_new_with_config(cfg); if (n_methods > 1) { tt_assert(base); tt_str_op(backend, !=, event_base_get_method(base)); } else { tt_assert(base == NULL); } end: if (base) event_base_free(base); if (cfg) event_config_free(cfg); } static void test_version(void *arg) { const char *vstr; ev_uint32_t vint; int major, minor, patch, n; vstr = event_get_version(); vint = event_get_version_number(); tt_assert(vstr); tt_assert(vint); tt_str_op(vstr, ==, LIBEVENT_VERSION); tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER); n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch); tt_assert(3 == n); tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8))); end: ; } static void test_base_features(void *arg) { struct event_base *base = NULL; struct event_config *cfg = NULL; cfg = event_config_new(); tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET)); base = event_base_new_with_config(cfg); if (base) { tt_int_op(EV_FEATURE_ET, ==, event_base_get_features(base) & EV_FEATURE_ET); } else { base = event_base_new(); tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET); } end: if (base) event_base_free(base); if (cfg) event_config_free(cfg); } #ifdef _EVENT_HAVE_SETENV #define SETENV_OK #elif !defined(_EVENT_HAVE_SETENV) && defined(_EVENT_HAVE_PUTENV) static void setenv(const char *k, const char *v, int _o) { char b[256]; evutil_snprintf(b, sizeof(b), "%s=%s",k,v); putenv(b); } #define SETENV_OK #endif #ifdef _EVENT_HAVE_UNSETENV #define UNSETENV_OK #elif !defined(_EVENT_HAVE_UNSETENV) && defined(_EVENT_HAVE_PUTENV) static void unsetenv(const char *k) { char b[256]; evutil_snprintf(b, sizeof(b), "%s=",k); putenv(b); } #define UNSETENV_OK #endif #if defined(SETENV_OK) && defined(UNSETENV_OK) static void methodname_to_envvar(const char *mname, char *buf, size_t buflen) { char *cp; evutil_snprintf(buf, buflen, "EVENT_NO%s", mname); for (cp = buf; *cp; ++cp) { *cp = EVUTIL_TOUPPER(*cp); } } #endif static void test_base_environ(void *arg) { struct event_base *base = NULL; struct event_config *cfg = NULL; #if defined(SETENV_OK) && defined(UNSETENV_OK) const char **basenames; int i, n_methods=0; char varbuf[128]; const char *defaultname, *ignoreenvname; /* See if unsetenv works before we rely on it. */ setenv("EVENT_NOWAFFLES", "1", 1); unsetenv("EVENT_NOWAFFLES"); if (getenv("EVENT_NOWAFFLES") != NULL) { #ifndef _EVENT_HAVE_UNSETENV TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test")); #else TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test")); #endif tt_skip(); } basenames = event_get_supported_methods(); for (i = 0; basenames[i]; ++i) { methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf)); unsetenv(varbuf); ++n_methods; } base = event_base_new(); tt_assert(base); defaultname = event_base_get_method(base); TT_BLATHER(("default is <%s>", defaultname)); event_base_free(base); base = NULL; /* Can we disable the method with EVENT_NOfoo ? */ if (!strcmp(defaultname, "epoll (with changelist)")) { setenv("EVENT_NOEPOLL", "1", 1); ignoreenvname = "epoll"; } else { methodname_to_envvar(defaultname, varbuf, sizeof(varbuf)); setenv(varbuf, "1", 1); ignoreenvname = defaultname; } /* Use an empty cfg rather than NULL so a failure doesn't exit() */ cfg = event_config_new(); base = event_base_new_with_config(cfg); event_config_free(cfg); cfg = NULL; if (n_methods == 1) { tt_assert(!base); } else { tt_assert(base); tt_str_op(defaultname, !=, event_base_get_method(base)); event_base_free(base); base = NULL; } /* Can we disable looking at the environment with IGNORE_ENV ? */ cfg = event_config_new(); event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); base = event_base_new_with_config(cfg); tt_assert(base); tt_str_op(ignoreenvname, ==, event_base_get_method(base)); #else tt_skip(); #endif end: if (base) event_base_free(base); if (cfg) event_config_free(cfg); } static void read_called_once_cb(evutil_socket_t fd, short event, void *arg) { tt_int_op(event, ==, EV_READ); called += 1; end: ; } static void timeout_called_once_cb(evutil_socket_t fd, short event, void *arg) { tt_int_op(event, ==, EV_TIMEOUT); called += 100; end: ; } static void test_event_once(void *ptr) { struct basic_test_data *data = ptr; struct timeval tv; int r; tv.tv_sec = 0; tv.tv_usec = 50*1000; called = 0; r = event_base_once(data->base, data->pair[0], EV_READ, read_called_once_cb, NULL, NULL); tt_int_op(r, ==, 0); r = event_base_once(data->base, -1, EV_TIMEOUT, timeout_called_once_cb, NULL, &tv); tt_int_op(r, ==, 0); r = event_base_once(data->base, -1, 0, NULL, NULL, NULL); tt_int_op(r, <, 0); if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) { tt_fail_perror("write"); } shutdown(data->pair[1], SHUT_WR); event_base_dispatch(data->base); tt_int_op(called, ==, 101); end: ; } static void test_event_pending(void *ptr) { struct basic_test_data *data = ptr; struct event *r=NULL, *w=NULL, *t=NULL; struct timeval tv, now, tv2, diff; tv.tv_sec = 0; tv.tv_usec = 500 * 1000; r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb, NULL); w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb, NULL); t = evtimer_new(data->base, timeout_cb, NULL); tt_assert(r); tt_assert(w); tt_assert(t); evutil_gettimeofday(&now, NULL); event_add(r, NULL); event_add(t, &tv); tt_assert( event_pending(r, EV_READ, NULL)); tt_assert(!event_pending(w, EV_WRITE, NULL)); tt_assert(!event_pending(r, EV_WRITE, NULL)); tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL)); tt_assert(!event_pending(r, EV_TIMEOUT, NULL)); tt_assert( event_pending(t, EV_TIMEOUT, NULL)); tt_assert( event_pending(t, EV_TIMEOUT, &tv2)); tt_assert(evutil_timercmp(&tv2, &now, >)); evutil_timeradd(&now, &tv, &tv); evutil_timersub(&tv2, &tv, &diff); tt_int_op(diff.tv_sec, ==, 0); tt_int_op(labs(diff.tv_usec), <, 1000); end: if (r) { event_del(r); event_free(r); } if (w) { event_del(w); event_free(w); } if (t) { event_del(t); event_free(t); } } #ifndef WIN32 /* You can't do this test on windows, since dup2 doesn't work on sockets */ static void dfd_cb(evutil_socket_t fd, short e, void *data) { *(int*)data = (int)e; } /* Regression test for our workaround for a fun epoll/linux related bug * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2) * will get you an EEXIST */ static void test_dup_fd(void *arg) { struct basic_test_data *data = arg; struct event_base *base = data->base; struct event *ev1=NULL, *ev2=NULL; int fd, dfd=-1; int ev1_got, ev2_got; tt_int_op(write(data->pair[0], "Hello world", strlen("Hello world")), >, 0); fd = data->pair[1]; dfd = dup(fd); tt_int_op(dfd, >=, 0); ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got); ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got); ev1_got = ev2_got = 0; event_add(ev1, NULL); event_add(ev2, NULL); event_base_loop(base, EVLOOP_ONCE); tt_int_op(ev1_got, ==, EV_READ); tt_int_op(ev2_got, ==, EV_READ); /* Now close and delete dfd then dispatch. We need to do the * dispatch here so that when we add it later, we think there * was an intermediate delete. */ close(dfd); event_del(ev2); ev1_got = ev2_got = 0; event_base_loop(base, EVLOOP_ONCE); tt_want_int_op(ev1_got, ==, EV_READ); tt_int_op(ev2_got, ==, 0); /* Re-duplicate the fd. We need to get the same duplicated * value that we closed to provoke the epoll quirk. Also, we * need to change the events to write, or else the old lingering * read event will make the test pass whether the change was * successful or not. */ tt_int_op(dup2(fd, dfd), ==, dfd); event_free(ev2); ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got); event_add(ev2, NULL); ev1_got = ev2_got = 0; event_base_loop(base, EVLOOP_ONCE); tt_want_int_op(ev1_got, ==, EV_READ); tt_int_op(ev2_got, ==, EV_WRITE); end: if (ev1) event_free(ev1); if (ev2) event_free(ev2); if (dfd >= 0) close(dfd); } #endif #ifdef _EVENT_DISABLE_MM_REPLACEMENT static void test_mm_functions(void *arg) { _tinytest_set_test_skipped(); } #else static int check_dummy_mem_ok(void *_mem) { char *mem = _mem; mem -= 16; return !memcmp(mem, "{[]}", 16); } static void * dummy_malloc(size_t len) { char *mem = malloc(len+16); memcpy(mem, "{[]}", 16); return mem+16; } static void * dummy_realloc(void *_mem, size_t len) { char *mem = _mem; if (!mem) return dummy_malloc(len); tt_want(check_dummy_mem_ok(_mem)); mem -= 16; mem = realloc(mem, len+16); return mem+16; } static void dummy_free(void *_mem) { char *mem = _mem; tt_want(check_dummy_mem_ok(_mem)); mem -= 16; free(mem); } static void test_mm_functions(void *arg) { struct event_base *b = NULL; struct event_config *cfg = NULL; event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free); cfg = event_config_new(); event_config_avoid_method(cfg, "Nonesuch"); b = event_base_new_with_config(cfg); tt_assert(b); tt_assert(check_dummy_mem_ok(b)); end: if (cfg) event_config_free(cfg); if (b) event_base_free(b); } #endif static void many_event_cb(evutil_socket_t fd, short event, void *arg) { int *calledp = arg; *calledp += 1; } static void test_many_events(void *arg) { /* Try 70 events that should all be ready at once. This will * exercise the "resize" code on most of the backends, and will make * sure that we can get past the 64-handle limit of some windows * functions. */ #define MANY 70 struct basic_test_data *data = arg; struct event_base *base = data->base; int one_at_a_time = data->setup_data != NULL; evutil_socket_t sock[MANY]; struct event *ev[MANY]; int called[MANY]; int i; int loopflags = EVLOOP_NONBLOCK, evflags=0; const int is_evport = !strcmp(event_base_get_method(base),"evport"); if (one_at_a_time) { loopflags |= EVLOOP_ONCE; evflags = EV_PERSIST; } memset(sock, 0xff, sizeof(sock)); memset(ev, 0, sizeof(ev)); memset(called, 0, sizeof(called)); if (is_evport && one_at_a_time) { TT_DECLARE("NOTE", ("evport can't pass this in 2.0; skipping\n")); tt_skip(); } for (i = 0; i < MANY; ++i) { /* We need an event that will hit the backend, and that will * be ready immediately. "Send a datagram" is an easy * instance of that. */ sock[i] = socket(AF_INET, SOCK_DGRAM, 0); tt_assert(sock[i] >= 0); called[i] = 0; ev[i] = event_new(base, sock[i], EV_WRITE|evflags, many_event_cb, &called[i]); event_add(ev[i], NULL); if (one_at_a_time) event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE); } event_base_loop(base, loopflags); for (i = 0; i < MANY; ++i) { if (one_at_a_time) tt_int_op(called[i], ==, MANY - i + 1); else tt_int_op(called[i], ==, 1); } end: for (i = 0; i < MANY; ++i) { if (ev[i]) event_free(ev[i]); if (sock[i] >= 0) evutil_closesocket(sock[i]); } #undef MANY } static void test_struct_event_size(void *arg) { tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event)); end: ; } struct testcase_t main_testcases[] = { /* Some converted-over tests */ { "methods", test_methods, TT_FORK, NULL, NULL }, { "version", test_version, 0, NULL, NULL }, BASIC(base_features, TT_FORK|TT_NO_LOGS), { "base_environ", test_base_environ, TT_FORK, NULL, NULL }, BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR), BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR), BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE), BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE), { "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, { "persistent_active_timeout", test_persistent_active_timeout, TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, LEGACY(priorities, TT_FORK|TT_NEED_BASE), BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE), { "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, /* These legacy tests may not all need all of these flags. */ LEGACY(simpleread, TT_ISOLATED), LEGACY(simpleread_multiple, TT_ISOLATED), LEGACY(simplewrite, TT_ISOLATED), { "simpleclose", test_simpleclose, TT_FORK, &basic_setup, NULL }, LEGACY(multiple, TT_ISOLATED), LEGACY(persistent, TT_ISOLATED), LEGACY(combined, TT_ISOLATED), LEGACY(simpletimeout, TT_ISOLATED), LEGACY(loopbreak, TT_ISOLATED), LEGACY(loopexit, TT_ISOLATED), LEGACY(loopexit_multiple, TT_ISOLATED), LEGACY(nonpersist_readd, TT_ISOLATED), LEGACY(multiple_events_for_same_fd, TT_ISOLATED), LEGACY(want_only_once, TT_ISOLATED), { "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL }, { "event_pending", test_event_pending, TT_ISOLATED, &basic_setup, NULL }, #ifndef WIN32 { "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL }, #endif { "mm_functions", test_mm_functions, TT_FORK, NULL, NULL }, { "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL }, { "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 }, { "struct_event_size", test_struct_event_size, 0, NULL, NULL }, #ifndef WIN32 LEGACY(fork, TT_ISOLATED), #endif END_OF_TESTCASES }; struct testcase_t evtag_testcases[] = { { "int", evtag_int_test, TT_FORK, NULL, NULL }, { "fuzz", evtag_fuzz, TT_FORK, NULL, NULL }, { "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL }, { "peek", evtag_test_peek, 0, NULL, NULL }, END_OF_TESTCASES }; struct testcase_t signal_testcases[] = { #ifndef WIN32 LEGACY(simplesignal, TT_ISOLATED), LEGACY(multiplesignal, TT_ISOLATED), LEGACY(immediatesignal, TT_ISOLATED), LEGACY(signal_dealloc, TT_ISOLATED), LEGACY(signal_pipeloss, TT_ISOLATED), LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS), LEGACY(signal_restore, TT_ISOLATED), LEGACY(signal_assert, TT_ISOLATED), LEGACY(signal_while_processing, TT_ISOLATED), #endif END_OF_TESTCASES };