/* * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm * * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $ * * This code is the same as the code published by RSA Inc. It has been * edited for clarity and style only. * * ---------------------------------------------------------------------------- * The md5_crypt() function was taken from freeBSD's libcrypt and contains * this license: * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * * $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $ * * ---------------------------------------------------------------------------- * On April 19th, 2001 md5_crypt() was modified to make it reentrant * by Erik Andersen * * * June 28, 2001 Manuel Novoa III * * "Un-inlined" code using loops and static const tables in order to * reduce generated code size (on i386 from approx 4k to approx 2.5k). * * June 29, 2001 Manuel Novoa III * * Completely removed static PADDING array. * * Reintroduced the loop unrolling in MD5_Transform and added the * MD5_SIZE_OVER_SPEED option for configurability. Define below as: * 0 fully unrolled loops * 1 partially unrolled (4 ops per loop) * 2 no unrolling -- introduces the need to swap 4 variables (slow) * 3 no unrolling and all 4 loops merged into one with switch * in each loop (glacial) * On i386, sizes are roughly (-Os -fno-builtin): * 0: 3k 1: 2.5k 2: 2.2k 3: 2k * * * Since SuSv3 does not require crypt_r, modified again August 7, 2002 * by Erik Andersen to remove reentrance stuff... */ /* * Valid values are 1 (fastest/largest) to 3 (smallest/slowest). */ #define MD5_SIZE_OVER_SPEED 3 /**********************************************************************/ /* MD5 context. */ struct MD5Context { uint32_t state[4]; /* state (ABCD) */ uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */ unsigned char buffer[64]; /* input buffer */ }; static void __md5_Init(struct MD5Context *); static void __md5_Update(struct MD5Context *, const unsigned char *, unsigned int); static void __md5_Pad(struct MD5Context *); static void __md5_Final(unsigned char [16], struct MD5Context *); static void __md5_Transform(uint32_t [4], const unsigned char [64]); #define MD5_MAGIC_STR "$1$" #define MD5_MAGIC_LEN (sizeof(MD5_MAGIC_STR) - 1) static const unsigned char __md5__magic[] = MD5_MAGIC_STR; #ifdef i386 #define __md5_Encode memcpy #define __md5_Decode memcpy #else /* i386 */ /* * __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is * a multiple of 4. */ static void __md5_Encode(unsigned char *output, uint32_t *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = input[i]; output[j+1] = (input[i] >> 8); output[j+2] = (input[i] >> 16); output[j+3] = (input[i] >> 24); } } /* * __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is * a multiple of 4. */ static void __md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j+1]) << 8) | (((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24); } #endif /* i386 */ /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | ~(z))) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } /* MD5 initialization. Begins an MD5 operation, writing a new context. */ static void __md5_Init(struct MD5Context *context) { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } /* * MD5 block update operation. Continues an MD5 message-digest * operation, processing another message block, and updating the * context. */ static void __md5_Update(struct MD5Context *context, const unsigned char *input, unsigned int inputLen) { unsigned int i, idx, partLen; /* Compute number of bytes mod 64 */ idx = (context->count[0] >> 3) & 0x3F; /* Update number of bits */ context->count[0] += (inputLen << 3); if (context->count[0] < (inputLen << 3)) context->count[1]++; context->count[1] += (inputLen >> 29); partLen = 64 - idx; /* Transform as many times as possible. */ if (inputLen >= partLen) { memcpy(&context->buffer[idx], input, partLen); __md5_Transform(context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) __md5_Transform(context->state, &input[i]); idx = 0; } else i = 0; /* Buffer remaining input */ memcpy(&context->buffer[idx], &input[i], inputLen - i); } /* * MD5 padding. Adds padding followed by original length. */ static void __md5_Pad(struct MD5Context *context) { unsigned char bits[8]; unsigned int idx, padLen; unsigned char PADDING[64]; memset(PADDING, 0, sizeof(PADDING)); PADDING[0] = 0x80; /* Save number of bits */ __md5_Encode(bits, context->count, 8); /* Pad out to 56 mod 64. */ idx = (context->count[0] >> 3) & 0x3f; padLen = (idx < 56) ? (56 - idx) : (120 - idx); __md5_Update(context, PADDING, padLen); /* Append length (before padding) */ __md5_Update(context, bits, 8); } /* * MD5 finalization. Ends an MD5 message-digest operation, writing the * the message digest and zeroizing the context. */ static void __md5_Final(unsigned char digest[16], struct MD5Context *context) { /* Do padding. */ __md5_Pad(context); /* Store state in digest */ __md5_Encode(digest, context->state, 16); /* Zeroize sensitive information. */ memset(context, 0, sizeof(*context)); } /* MD5 basic transformation. Transforms state based on block. */ static void __md5_Transform(uint32_t state[4], const unsigned char block[64]) { uint32_t a, b, c, d, x[16]; #if MD5_SIZE_OVER_SPEED > 1 uint32_t temp; const unsigned char *ps; static const unsigned char S[] = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21 }; #endif /* MD5_SIZE_OVER_SPEED > 1 */ #if MD5_SIZE_OVER_SPEED > 0 const uint32_t *pc; const unsigned char *pp; int i; static const uint32_t C[] = { /* round 1 */ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, /* round 2 */ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, /* round 3 */ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, /* round 4 */ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; static const unsigned char P[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ }; #endif /* MD5_SIZE_OVER_SPEED > 0 */ __md5_Decode(x, block, 64); a = state[0]; b = state[1]; c = state[2]; d = state[3]; #if MD5_SIZE_OVER_SPEED > 2 pc = C; pp = P; ps = S - 4; for (i = 0; i < 64; i++) { if ((i & 0x0f) == 0) ps += 4; temp = a; switch (i>>4) { case 0: temp += F(b, c, d); break; case 1: temp += G(b, c, d); break; case 2: temp += H(b, c, d); break; case 3: temp += I(b, c, d); break; } temp += x[*pp++] + *pc++; temp = ROTATE_LEFT(temp, ps[i & 3]); temp += b; a = d; d = c; c = b; b = temp; } #elif MD5_SIZE_OVER_SPEED > 1 pc = C; pp = P; ps = S; /* Round 1 */ for (i = 0; i < 16; i++) { FF(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; temp = d; d = c; c = b; b = a; a = temp; } /* Round 2 */ ps += 4; for (; i < 32; i++) { GG(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; temp = d; d = c; c = b; b = a; a = temp; } /* Round 3 */ ps += 4; for (; i < 48; i++) { HH(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; temp = d; d = c; c = b; b = a; a = temp; } /* Round 4 */ ps += 4; for (; i < 64; i++) { II(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; temp = d; d = c; c = b; b = a; a = temp; } #elif MD5_SIZE_OVER_SPEED > 0 pc = C; pp = P; /* Round 1 */ for (i = 0; i < 4; i++) { FF(a, b, c, d, x[*pp], 7, *pc); pp++; pc++; FF(d, a, b, c, x[*pp], 12, *pc); pp++; pc++; FF(c, d, a, b, x[*pp], 17, *pc); pp++; pc++; FF(b, c, d, a, x[*pp], 22, *pc); pp++; pc++; } /* Round 2 */ for (i = 0; i < 4; i++) { GG(a, b, c, d, x[*pp], 5, *pc); pp++; pc++; GG(d, a, b, c, x[*pp], 9, *pc); pp++; pc++; GG(c, d, a, b, x[*pp], 14, *pc); pp++; pc++; GG(b, c, d, a, x[*pp], 20, *pc); pp++; pc++; } /* Round 3 */ for (i = 0; i < 4; i++) { HH(a, b, c, d, x[*pp], 4, *pc); pp++; pc++; HH(d, a, b, c, x[*pp], 11, *pc); pp++; pc++; HH(c, d, a, b, x[*pp], 16, *pc); pp++; pc++; HH(b, c, d, a, x[*pp], 23, *pc); pp++; pc++; } /* Round 4 */ for (i = 0; i < 4; i++) { II(a, b, c, d, x[*pp], 6, *pc); pp++; pc++; II(d, a, b, c, x[*pp], 10, *pc); pp++; pc++; II(c, d, a, b, x[*pp], 15, *pc); pp++; pc++; II(b, c, d, a, x[*pp], 21, *pc); pp++; pc++; } #else /* Round 1 */ #define S11 7 #define S12 12 #define S13 17 #define S14 22 FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ #define S21 5 #define S22 9 #define S23 14 #define S24 20 GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ #define S31 4 #define S32 11 #define S33 16 #define S34 23 HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ #define S41 6 #define S42 10 #define S43 15 #define S44 21 II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ #endif state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ memset(x, 0, sizeof(x)); } static char* __md5_to64(char *s, unsigned v, int n) { while (--n >= 0) { *s++ = ascii64[v & 0x3f]; v >>= 6; } return s; } /* * UNIX password * * Use MD5 for what it is best at... */ #define MD5_OUT_BUFSIZE 36 static char * NOINLINE md5_crypt(char passwd[MD5_OUT_BUFSIZE], const unsigned char *pw, const unsigned char *salt) { const unsigned char *sp, *ep; char *p; unsigned char final[17]; /* final[16] exists only to aid in looping */ int sl, pl, i, pw_len; struct MD5Context ctx, ctx1; /* Refine the Salt first */ sp = salt; // always true for bbox // /* If it starts with the magic string, then skip that */ // if (!strncmp(sp, __md5__magic, MD5_MAGIC_LEN)) sp += MD5_MAGIC_LEN; /* It stops at the first '$', max 8 chars */ for (ep = sp; *ep && *ep != '$' && ep < (sp+8); ep++) continue; /* get the length of the true salt */ sl = ep - sp; __md5_Init(&ctx); /* The password first, since that is what is most unknown */ pw_len = strlen((char*)pw); __md5_Update(&ctx, pw, pw_len); /* Then our magic string */ __md5_Update(&ctx, __md5__magic, MD5_MAGIC_LEN); /* Then the raw salt */ __md5_Update(&ctx, sp, sl); /* Then just as many characters of the MD5(pw, salt, pw) */ __md5_Init(&ctx1); __md5_Update(&ctx1, pw, pw_len); __md5_Update(&ctx1, sp, sl); __md5_Update(&ctx1, pw, pw_len); __md5_Final(final, &ctx1); for (pl = pw_len; pl > 0; pl -= 16) __md5_Update(&ctx, final, pl > 16 ? 16 : pl); /* Don't leave anything around in vm they could use. */ //TODO: the above comment seems to be wrong. final is used later. memset(final, 0, sizeof(final)); /* Then something really weird... */ for (i = pw_len; i; i >>= 1) { __md5_Update(&ctx, ((i & 1) ? final : (const unsigned char *) pw), 1); } /* Now make the output string */ passwd[0] = '$'; passwd[1] = '1'; passwd[2] = '$'; strncpy(passwd + 3, (char*)sp, sl); passwd[sl + 3] = '$'; __md5_Final(final, &ctx); /* * and now, just to make sure things don't run too fast * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for (i = 0; i < 1000; i++) { __md5_Init(&ctx1); if (i & 1) __md5_Update(&ctx1, pw, pw_len); else __md5_Update(&ctx1, final, 16); if (i % 3) __md5_Update(&ctx1, sp, sl); if (i % 7) __md5_Update(&ctx1, pw, pw_len); if (i & 1) __md5_Update(&ctx1, final, 16); else __md5_Update(&ctx1, pw, pw_len); __md5_Final(final, &ctx1); } p = passwd + sl + 4; /* 12 bytes max (sl is up to 8 bytes) */ /* Add 5*4+2 = 22 bytes of hash, + NUL byte. */ final[16] = final[5]; for (i = 0; i < 5; i++) { unsigned l = (final[i] << 16) | (final[i+6] << 8) | final[i+12]; p = __md5_to64(p, l, 4); } p = __md5_to64(p, final[11], 2); *p = '\0'; /* Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); return passwd; } #undef MD5_SIZE_OVER_SPEED #undef MD5_MAGIC_STR #undef MD5_MAGIC_LEN #undef __md5_Encode #undef __md5_Decode #undef F #undef G #undef H #undef I #undef ROTATE_LEFT #undef FF #undef GG #undef HH #undef II #undef S11 #undef S12 #undef S13 #undef S14 #undef S21 #undef S22 #undef S23 #undef S24 #undef S31 #undef S32 #undef S33 #undef S34 #undef S41 #undef S42 #undef S43 #undef S44