/* * USB xHCI controller emulation * * Copyright (c) 2011 Securiforest * Date: 2011-05-11 ; Author: Hector Martin * Based on usb-ohci.c, emulates Renesas NEC USB 3.0 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "hw/hw.h" #include "qemu-timer.h" #include "hw/usb.h" #include "hw/pci.h" #include "hw/msi.h" #include "hw/msix.h" #include "trace.h" //#define DEBUG_XHCI //#define DEBUG_DATA #ifdef DEBUG_XHCI #define DPRINTF(...) fprintf(stderr, __VA_ARGS__) #else #define DPRINTF(...) do {} while (0) #endif #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \ __func__, __LINE__); abort(); } while (0) #define MAXPORTS_2 8 #define MAXPORTS_3 8 #define MAXPORTS (MAXPORTS_2+MAXPORTS_3) #define MAXSLOTS MAXPORTS #define MAXINTRS MAXPORTS #define TD_QUEUE 24 /* Very pessimistic, let's hope it's enough for all cases */ #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS) /* Do not deliver ER Full events. NEC's driver does some things not bound * to the specs when it gets them */ #define ER_FULL_HACK #define LEN_CAP 0x40 #define LEN_OPER (0x400 + 0x10 * MAXPORTS) #define LEN_RUNTIME ((MAXINTRS + 1) * 0x20) #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20) #define OFF_OPER LEN_CAP #define OFF_RUNTIME 0x1000 #define OFF_DOORBELL 0x2000 #define OFF_MSIX_TABLE 0x3000 #define OFF_MSIX_PBA 0x3800 /* must be power of 2 */ #define LEN_REGS 0x4000 #if (OFF_OPER + LEN_OPER) > OFF_RUNTIME #error Increase OFF_RUNTIME #endif #if (OFF_RUNTIME + LEN_RUNTIME) > OFF_DOORBELL #error Increase OFF_DOORBELL #endif #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS # error Increase LEN_REGS #endif /* bit definitions */ #define USBCMD_RS (1<<0) #define USBCMD_HCRST (1<<1) #define USBCMD_INTE (1<<2) #define USBCMD_HSEE (1<<3) #define USBCMD_LHCRST (1<<7) #define USBCMD_CSS (1<<8) #define USBCMD_CRS (1<<9) #define USBCMD_EWE (1<<10) #define USBCMD_EU3S (1<<11) #define USBSTS_HCH (1<<0) #define USBSTS_HSE (1<<2) #define USBSTS_EINT (1<<3) #define USBSTS_PCD (1<<4) #define USBSTS_SSS (1<<8) #define USBSTS_RSS (1<<9) #define USBSTS_SRE (1<<10) #define USBSTS_CNR (1<<11) #define USBSTS_HCE (1<<12) #define PORTSC_CCS (1<<0) #define PORTSC_PED (1<<1) #define PORTSC_OCA (1<<3) #define PORTSC_PR (1<<4) #define PORTSC_PLS_SHIFT 5 #define PORTSC_PLS_MASK 0xf #define PORTSC_PP (1<<9) #define PORTSC_SPEED_SHIFT 10 #define PORTSC_SPEED_MASK 0xf #define PORTSC_SPEED_FULL (1<<10) #define PORTSC_SPEED_LOW (2<<10) #define PORTSC_SPEED_HIGH (3<<10) #define PORTSC_SPEED_SUPER (4<<10) #define PORTSC_PIC_SHIFT 14 #define PORTSC_PIC_MASK 0x3 #define PORTSC_LWS (1<<16) #define PORTSC_CSC (1<<17) #define PORTSC_PEC (1<<18) #define PORTSC_WRC (1<<19) #define PORTSC_OCC (1<<20) #define PORTSC_PRC (1<<21) #define PORTSC_PLC (1<<22) #define PORTSC_CEC (1<<23) #define PORTSC_CAS (1<<24) #define PORTSC_WCE (1<<25) #define PORTSC_WDE (1<<26) #define PORTSC_WOE (1<<27) #define PORTSC_DR (1<<30) #define PORTSC_WPR (1<<31) #define CRCR_RCS (1<<0) #define CRCR_CS (1<<1) #define CRCR_CA (1<<2) #define CRCR_CRR (1<<3) #define IMAN_IP (1<<0) #define IMAN_IE (1<<1) #define ERDP_EHB (1<<3) #define TRB_SIZE 16 typedef struct XHCITRB { uint64_t parameter; uint32_t status; uint32_t control; dma_addr_t addr; bool ccs; } XHCITRB; typedef enum TRBType { TRB_RESERVED = 0, TR_NORMAL, TR_SETUP, TR_DATA, TR_STATUS, TR_ISOCH, TR_LINK, TR_EVDATA, TR_NOOP, CR_ENABLE_SLOT, CR_DISABLE_SLOT, CR_ADDRESS_DEVICE, CR_CONFIGURE_ENDPOINT, CR_EVALUATE_CONTEXT, CR_RESET_ENDPOINT, CR_STOP_ENDPOINT, CR_SET_TR_DEQUEUE, CR_RESET_DEVICE, CR_FORCE_EVENT, CR_NEGOTIATE_BW, CR_SET_LATENCY_TOLERANCE, CR_GET_PORT_BANDWIDTH, CR_FORCE_HEADER, CR_NOOP, ER_TRANSFER = 32, ER_COMMAND_COMPLETE, ER_PORT_STATUS_CHANGE, ER_BANDWIDTH_REQUEST, ER_DOORBELL, ER_HOST_CONTROLLER, ER_DEVICE_NOTIFICATION, ER_MFINDEX_WRAP, /* vendor specific bits */ CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48, CR_VENDOR_NEC_FIRMWARE_REVISION = 49, CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50, } TRBType; #define CR_LINK TR_LINK typedef enum TRBCCode { CC_INVALID = 0, CC_SUCCESS, CC_DATA_BUFFER_ERROR, CC_BABBLE_DETECTED, CC_USB_TRANSACTION_ERROR, CC_TRB_ERROR, CC_STALL_ERROR, CC_RESOURCE_ERROR, CC_BANDWIDTH_ERROR, CC_NO_SLOTS_ERROR, CC_INVALID_STREAM_TYPE_ERROR, CC_SLOT_NOT_ENABLED_ERROR, CC_EP_NOT_ENABLED_ERROR, CC_SHORT_PACKET, CC_RING_UNDERRUN, CC_RING_OVERRUN, CC_VF_ER_FULL, CC_PARAMETER_ERROR, CC_BANDWIDTH_OVERRUN, CC_CONTEXT_STATE_ERROR, CC_NO_PING_RESPONSE_ERROR, CC_EVENT_RING_FULL_ERROR, CC_INCOMPATIBLE_DEVICE_ERROR, CC_MISSED_SERVICE_ERROR, CC_COMMAND_RING_STOPPED, CC_COMMAND_ABORTED, CC_STOPPED, CC_STOPPED_LENGTH_INVALID, CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29, CC_ISOCH_BUFFER_OVERRUN = 31, CC_EVENT_LOST_ERROR, CC_UNDEFINED_ERROR, CC_INVALID_STREAM_ID_ERROR, CC_SECONDARY_BANDWIDTH_ERROR, CC_SPLIT_TRANSACTION_ERROR } TRBCCode; #define TRB_C (1<<0) #define TRB_TYPE_SHIFT 10 #define TRB_TYPE_MASK 0x3f #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK) #define TRB_EV_ED (1<<2) #define TRB_TR_ENT (1<<1) #define TRB_TR_ISP (1<<2) #define TRB_TR_NS (1<<3) #define TRB_TR_CH (1<<4) #define TRB_TR_IOC (1<<5) #define TRB_TR_IDT (1<<6) #define TRB_TR_TBC_SHIFT 7 #define TRB_TR_TBC_MASK 0x3 #define TRB_TR_BEI (1<<9) #define TRB_TR_TLBPC_SHIFT 16 #define TRB_TR_TLBPC_MASK 0xf #define TRB_TR_FRAMEID_SHIFT 20 #define TRB_TR_FRAMEID_MASK 0x7ff #define TRB_TR_SIA (1<<31) #define TRB_TR_DIR (1<<16) #define TRB_CR_SLOTID_SHIFT 24 #define TRB_CR_SLOTID_MASK 0xff #define TRB_CR_EPID_SHIFT 16 #define TRB_CR_EPID_MASK 0x1f #define TRB_CR_BSR (1<<9) #define TRB_CR_DC (1<<9) #define TRB_LK_TC (1<<1) #define TRB_INTR_SHIFT 22 #define TRB_INTR_MASK 0x3ff #define TRB_INTR(t) (((t).status >> TRB_INTR_SHIFT) & TRB_INTR_MASK) #define EP_TYPE_MASK 0x7 #define EP_TYPE_SHIFT 3 #define EP_STATE_MASK 0x7 #define EP_DISABLED (0<<0) #define EP_RUNNING (1<<0) #define EP_HALTED (2<<0) #define EP_STOPPED (3<<0) #define EP_ERROR (4<<0) #define SLOT_STATE_MASK 0x1f #define SLOT_STATE_SHIFT 27 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK) #define SLOT_ENABLED 0 #define SLOT_DEFAULT 1 #define SLOT_ADDRESSED 2 #define SLOT_CONFIGURED 3 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f #define SLOT_CONTEXT_ENTRIES_SHIFT 27 typedef enum EPType { ET_INVALID = 0, ET_ISO_OUT, ET_BULK_OUT, ET_INTR_OUT, ET_CONTROL, ET_ISO_IN, ET_BULK_IN, ET_INTR_IN, } EPType; typedef struct XHCIRing { dma_addr_t base; dma_addr_t dequeue; bool ccs; } XHCIRing; typedef struct XHCIPort { uint32_t portsc; uint32_t portnr; USBPort *uport; uint32_t speedmask; } XHCIPort; struct XHCIState; typedef struct XHCIState XHCIState; typedef struct XHCITransfer { XHCIState *xhci; USBPacket packet; QEMUSGList sgl; bool running_async; bool running_retry; bool cancelled; bool complete; unsigned int iso_pkts; unsigned int slotid; unsigned int epid; bool in_xfer; bool iso_xfer; unsigned int trb_count; unsigned int trb_alloced; XHCITRB *trbs; TRBCCode status; unsigned int pkts; unsigned int pktsize; unsigned int cur_pkt; uint64_t mfindex_kick; } XHCITransfer; typedef struct XHCIEPContext { XHCIState *xhci; unsigned int slotid; unsigned int epid; XHCIRing ring; unsigned int next_xfer; unsigned int comp_xfer; XHCITransfer transfers[TD_QUEUE]; XHCITransfer *retry; EPType type; dma_addr_t pctx; unsigned int max_psize; uint32_t state; /* iso xfer scheduling */ unsigned int interval; int64_t mfindex_last; QEMUTimer *kick_timer; } XHCIEPContext; typedef struct XHCISlot { bool enabled; dma_addr_t ctx; unsigned int port; unsigned int devaddr; XHCIEPContext * eps[31]; } XHCISlot; typedef struct XHCIEvent { TRBType type; TRBCCode ccode; uint64_t ptr; uint32_t length; uint32_t flags; uint8_t slotid; uint8_t epid; } XHCIEvent; typedef struct XHCIInterrupter { uint32_t iman; uint32_t imod; uint32_t erstsz; uint32_t erstba_low; uint32_t erstba_high; uint32_t erdp_low; uint32_t erdp_high; bool msix_used, er_pcs, er_full; dma_addr_t er_start; uint32_t er_size; unsigned int er_ep_idx; XHCIEvent ev_buffer[EV_QUEUE]; unsigned int ev_buffer_put; unsigned int ev_buffer_get; } XHCIInterrupter; struct XHCIState { PCIDevice pci_dev; USBBus bus; qemu_irq irq; MemoryRegion mem; MemoryRegion mem_cap; MemoryRegion mem_oper; MemoryRegion mem_runtime; MemoryRegion mem_doorbell; const char *name; unsigned int devaddr; /* properties */ uint32_t numports_2; uint32_t numports_3; uint32_t flags; /* Operational Registers */ uint32_t usbcmd; uint32_t usbsts; uint32_t dnctrl; uint32_t crcr_low; uint32_t crcr_high; uint32_t dcbaap_low; uint32_t dcbaap_high; uint32_t config; USBPort uports[MAX(MAXPORTS_2, MAXPORTS_3)]; XHCIPort ports[MAXPORTS]; XHCISlot slots[MAXSLOTS]; uint32_t numports; /* Runtime Registers */ int64_t mfindex_start; QEMUTimer *mfwrap_timer; XHCIInterrupter intr[MAXINTRS]; XHCIRing cmd_ring; }; typedef struct XHCIEvRingSeg { uint32_t addr_low; uint32_t addr_high; uint32_t size; uint32_t rsvd; } XHCIEvRingSeg; enum xhci_flags { XHCI_FLAG_USE_MSI = 1, XHCI_FLAG_USE_MSI_X, }; static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid); static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v); static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v); static const char *TRBType_names[] = { [TRB_RESERVED] = "TRB_RESERVED", [TR_NORMAL] = "TR_NORMAL", [TR_SETUP] = "TR_SETUP", [TR_DATA] = "TR_DATA", [TR_STATUS] = "TR_STATUS", [TR_ISOCH] = "TR_ISOCH", [TR_LINK] = "TR_LINK", [TR_EVDATA] = "TR_EVDATA", [TR_NOOP] = "TR_NOOP", [CR_ENABLE_SLOT] = "CR_ENABLE_SLOT", [CR_DISABLE_SLOT] = "CR_DISABLE_SLOT", [CR_ADDRESS_DEVICE] = "CR_ADDRESS_DEVICE", [CR_CONFIGURE_ENDPOINT] = "CR_CONFIGURE_ENDPOINT", [CR_EVALUATE_CONTEXT] = "CR_EVALUATE_CONTEXT", [CR_RESET_ENDPOINT] = "CR_RESET_ENDPOINT", [CR_STOP_ENDPOINT] = "CR_STOP_ENDPOINT", [CR_SET_TR_DEQUEUE] = "CR_SET_TR_DEQUEUE", [CR_RESET_DEVICE] = "CR_RESET_DEVICE", [CR_FORCE_EVENT] = "CR_FORCE_EVENT", [CR_NEGOTIATE_BW] = "CR_NEGOTIATE_BW", [CR_SET_LATENCY_TOLERANCE] = "CR_SET_LATENCY_TOLERANCE", [CR_GET_PORT_BANDWIDTH] = "CR_GET_PORT_BANDWIDTH", [CR_FORCE_HEADER] = "CR_FORCE_HEADER", [CR_NOOP] = "CR_NOOP", [ER_TRANSFER] = "ER_TRANSFER", [ER_COMMAND_COMPLETE] = "ER_COMMAND_COMPLETE", [ER_PORT_STATUS_CHANGE] = "ER_PORT_STATUS_CHANGE", [ER_BANDWIDTH_REQUEST] = "ER_BANDWIDTH_REQUEST", [ER_DOORBELL] = "ER_DOORBELL", [ER_HOST_CONTROLLER] = "ER_HOST_CONTROLLER", [ER_DEVICE_NOTIFICATION] = "ER_DEVICE_NOTIFICATION", [ER_MFINDEX_WRAP] = "ER_MFINDEX_WRAP", [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE", [CR_VENDOR_NEC_FIRMWARE_REVISION] = "CR_VENDOR_NEC_FIRMWARE_REVISION", [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE", }; static const char *TRBCCode_names[] = { [CC_INVALID] = "CC_INVALID", [CC_SUCCESS] = "CC_SUCCESS", [CC_DATA_BUFFER_ERROR] = "CC_DATA_BUFFER_ERROR", [CC_BABBLE_DETECTED] = "CC_BABBLE_DETECTED", [CC_USB_TRANSACTION_ERROR] = "CC_USB_TRANSACTION_ERROR", [CC_TRB_ERROR] = "CC_TRB_ERROR", [CC_STALL_ERROR] = "CC_STALL_ERROR", [CC_RESOURCE_ERROR] = "CC_RESOURCE_ERROR", [CC_BANDWIDTH_ERROR] = "CC_BANDWIDTH_ERROR", [CC_NO_SLOTS_ERROR] = "CC_NO_SLOTS_ERROR", [CC_INVALID_STREAM_TYPE_ERROR] = "CC_INVALID_STREAM_TYPE_ERROR", [CC_SLOT_NOT_ENABLED_ERROR] = "CC_SLOT_NOT_ENABLED_ERROR", [CC_EP_NOT_ENABLED_ERROR] = "CC_EP_NOT_ENABLED_ERROR", [CC_SHORT_PACKET] = "CC_SHORT_PACKET", [CC_RING_UNDERRUN] = "CC_RING_UNDERRUN", [CC_RING_OVERRUN] = "CC_RING_OVERRUN", [CC_VF_ER_FULL] = "CC_VF_ER_FULL", [CC_PARAMETER_ERROR] = "CC_PARAMETER_ERROR", [CC_BANDWIDTH_OVERRUN] = "CC_BANDWIDTH_OVERRUN", [CC_CONTEXT_STATE_ERROR] = "CC_CONTEXT_STATE_ERROR", [CC_NO_PING_RESPONSE_ERROR] = "CC_NO_PING_RESPONSE_ERROR", [CC_EVENT_RING_FULL_ERROR] = "CC_EVENT_RING_FULL_ERROR", [CC_INCOMPATIBLE_DEVICE_ERROR] = "CC_INCOMPATIBLE_DEVICE_ERROR", [CC_MISSED_SERVICE_ERROR] = "CC_MISSED_SERVICE_ERROR", [CC_COMMAND_RING_STOPPED] = "CC_COMMAND_RING_STOPPED", [CC_COMMAND_ABORTED] = "CC_COMMAND_ABORTED", [CC_STOPPED] = "CC_STOPPED", [CC_STOPPED_LENGTH_INVALID] = "CC_STOPPED_LENGTH_INVALID", [CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR] = "CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR", [CC_ISOCH_BUFFER_OVERRUN] = "CC_ISOCH_BUFFER_OVERRUN", [CC_EVENT_LOST_ERROR] = "CC_EVENT_LOST_ERROR", [CC_UNDEFINED_ERROR] = "CC_UNDEFINED_ERROR", [CC_INVALID_STREAM_ID_ERROR] = "CC_INVALID_STREAM_ID_ERROR", [CC_SECONDARY_BANDWIDTH_ERROR] = "CC_SECONDARY_BANDWIDTH_ERROR", [CC_SPLIT_TRANSACTION_ERROR] = "CC_SPLIT_TRANSACTION_ERROR", }; static const char *lookup_name(uint32_t index, const char **list, uint32_t llen) { if (index >= llen || list[index] == NULL) { return "???"; } return list[index]; } static const char *trb_name(XHCITRB *trb) { return lookup_name(TRB_TYPE(*trb), TRBType_names, ARRAY_SIZE(TRBType_names)); } static const char *event_name(XHCIEvent *event) { return lookup_name(event->ccode, TRBCCode_names, ARRAY_SIZE(TRBCCode_names)); } static uint64_t xhci_mfindex_get(XHCIState *xhci) { int64_t now = qemu_get_clock_ns(vm_clock); return (now - xhci->mfindex_start) / 125000; } static void xhci_mfwrap_update(XHCIState *xhci) { const uint32_t bits = USBCMD_RS | USBCMD_EWE; uint32_t mfindex, left; int64_t now; if ((xhci->usbcmd & bits) == bits) { now = qemu_get_clock_ns(vm_clock); mfindex = ((now - xhci->mfindex_start) / 125000) & 0x3fff; left = 0x4000 - mfindex; qemu_mod_timer(xhci->mfwrap_timer, now + left * 125000); } else { qemu_del_timer(xhci->mfwrap_timer); } } static void xhci_mfwrap_timer(void *opaque) { XHCIState *xhci = opaque; XHCIEvent wrap = { ER_MFINDEX_WRAP, CC_SUCCESS }; xhci_event(xhci, &wrap, 0); xhci_mfwrap_update(xhci); } static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high) { if (sizeof(dma_addr_t) == 4) { return low; } else { return low | (((dma_addr_t)high << 16) << 16); } } static inline dma_addr_t xhci_mask64(uint64_t addr) { if (sizeof(dma_addr_t) == 4) { return addr & 0xffffffff; } else { return addr; } } static XHCIPort *xhci_lookup_port(XHCIState *xhci, struct USBPort *uport) { int index; if (!uport->dev) { return NULL; } switch (uport->dev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: index = uport->index; break; case USB_SPEED_SUPER: index = uport->index + xhci->numports_2; break; default: return NULL; } return &xhci->ports[index]; } static void xhci_intx_update(XHCIState *xhci) { int level = 0; if (msix_enabled(&xhci->pci_dev) || msi_enabled(&xhci->pci_dev)) { return; } if (xhci->intr[0].iman & IMAN_IP && xhci->intr[0].iman & IMAN_IE && xhci->usbcmd & USBCMD_INTE) { level = 1; } trace_usb_xhci_irq_intx(level); qemu_set_irq(xhci->irq, level); } static void xhci_msix_update(XHCIState *xhci, int v) { bool enabled; if (!msix_enabled(&xhci->pci_dev)) { return; } enabled = xhci->intr[v].iman & IMAN_IE; if (enabled == xhci->intr[v].msix_used) { return; } if (enabled) { trace_usb_xhci_irq_msix_use(v); msix_vector_use(&xhci->pci_dev, v); xhci->intr[v].msix_used = true; } else { trace_usb_xhci_irq_msix_unuse(v); msix_vector_unuse(&xhci->pci_dev, v); xhci->intr[v].msix_used = false; } } static void xhci_intr_raise(XHCIState *xhci, int v) { xhci->intr[v].erdp_low |= ERDP_EHB; xhci->intr[v].iman |= IMAN_IP; xhci->usbsts |= USBSTS_EINT; if (!(xhci->intr[v].iman & IMAN_IE)) { return; } if (!(xhci->usbcmd & USBCMD_INTE)) { return; } if (msix_enabled(&xhci->pci_dev)) { trace_usb_xhci_irq_msix(v); msix_notify(&xhci->pci_dev, v); return; } if (msi_enabled(&xhci->pci_dev)) { trace_usb_xhci_irq_msi(v); msi_notify(&xhci->pci_dev, v); return; } if (v == 0) { trace_usb_xhci_irq_intx(1); qemu_set_irq(xhci->irq, 1); } } static inline int xhci_running(XHCIState *xhci) { return !(xhci->usbsts & USBSTS_HCH) && !xhci->intr[0].er_full; } static void xhci_die(XHCIState *xhci) { xhci->usbsts |= USBSTS_HCE; fprintf(stderr, "xhci: asserted controller error\n"); } static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v) { XHCIInterrupter *intr = &xhci->intr[v]; XHCITRB ev_trb; dma_addr_t addr; ev_trb.parameter = cpu_to_le64(event->ptr); ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24)); ev_trb.control = (event->slotid << 24) | (event->epid << 16) | event->flags | (event->type << TRB_TYPE_SHIFT); if (intr->er_pcs) { ev_trb.control |= TRB_C; } ev_trb.control = cpu_to_le32(ev_trb.control); trace_usb_xhci_queue_event(v, intr->er_ep_idx, trb_name(&ev_trb), event_name(event), ev_trb.parameter, ev_trb.status, ev_trb.control); addr = intr->er_start + TRB_SIZE*intr->er_ep_idx; pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE); intr->er_ep_idx++; if (intr->er_ep_idx >= intr->er_size) { intr->er_ep_idx = 0; intr->er_pcs = !intr->er_pcs; } } static void xhci_events_update(XHCIState *xhci, int v) { XHCIInterrupter *intr = &xhci->intr[v]; dma_addr_t erdp; unsigned int dp_idx; bool do_irq = 0; if (xhci->usbsts & USBSTS_HCH) { return; } erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); if (erdp < intr->er_start || erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", v, intr->er_start, intr->er_size); xhci_die(xhci); return; } dp_idx = (erdp - intr->er_start) / TRB_SIZE; assert(dp_idx < intr->er_size); /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus * deadlocks when the ER is full. Hack it by holding off events until * the driver decides to free at least half of the ring */ if (intr->er_full) { int er_free = dp_idx - intr->er_ep_idx; if (er_free <= 0) { er_free += intr->er_size; } if (er_free < (intr->er_size/2)) { DPRINTF("xhci_events_update(): event ring still " "more than half full (hack)\n"); return; } } while (intr->ev_buffer_put != intr->ev_buffer_get) { assert(intr->er_full); if (((intr->er_ep_idx+1) % intr->er_size) == dp_idx) { DPRINTF("xhci_events_update(): event ring full again\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full, v); #endif do_irq = 1; break; } XHCIEvent *event = &intr->ev_buffer[intr->ev_buffer_get]; xhci_write_event(xhci, event, v); intr->ev_buffer_get++; do_irq = 1; if (intr->ev_buffer_get == EV_QUEUE) { intr->ev_buffer_get = 0; } } if (do_irq) { xhci_intr_raise(xhci, v); } if (intr->er_full && intr->ev_buffer_put == intr->ev_buffer_get) { DPRINTF("xhci_events_update(): event ring no longer full\n"); intr->er_full = 0; } return; } static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v) { XHCIInterrupter *intr; dma_addr_t erdp; unsigned int dp_idx; if (v >= MAXINTRS) { DPRINTF("intr nr out of range (%d >= %d)\n", v, MAXINTRS); return; } intr = &xhci->intr[v]; if (intr->er_full) { DPRINTF("xhci_event(): ER full, queueing\n"); if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { fprintf(stderr, "xhci: event queue full, dropping event!\n"); return; } intr->ev_buffer[intr->ev_buffer_put++] = *event; if (intr->ev_buffer_put == EV_QUEUE) { intr->ev_buffer_put = 0; } return; } erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); if (erdp < intr->er_start || erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { fprintf(stderr, "xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); fprintf(stderr, "xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", v, intr->er_start, intr->er_size); xhci_die(xhci); return; } dp_idx = (erdp - intr->er_start) / TRB_SIZE; assert(dp_idx < intr->er_size); if ((intr->er_ep_idx+1) % intr->er_size == dp_idx) { DPRINTF("xhci_event(): ER full, queueing\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full); #endif intr->er_full = 1; if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { fprintf(stderr, "xhci: event queue full, dropping event!\n"); return; } intr->ev_buffer[intr->ev_buffer_put++] = *event; if (intr->ev_buffer_put == EV_QUEUE) { intr->ev_buffer_put = 0; } } else { xhci_write_event(xhci, event, v); } xhci_intr_raise(xhci, v); } static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring, dma_addr_t base) { ring->base = base; ring->dequeue = base; ring->ccs = 1; } static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb, dma_addr_t *addr) { while (1) { TRBType type; pci_dma_read(&xhci->pci_dev, ring->dequeue, trb, TRB_SIZE); trb->addr = ring->dequeue; trb->ccs = ring->ccs; le64_to_cpus(&trb->parameter); le32_to_cpus(&trb->status); le32_to_cpus(&trb->control); trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb), trb->parameter, trb->status, trb->control); if ((trb->control & TRB_C) != ring->ccs) { return 0; } type = TRB_TYPE(*trb); if (type != TR_LINK) { if (addr) { *addr = ring->dequeue; } ring->dequeue += TRB_SIZE; return type; } else { ring->dequeue = xhci_mask64(trb->parameter); if (trb->control & TRB_LK_TC) { ring->ccs = !ring->ccs; } } } } static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring) { XHCITRB trb; int length = 0; dma_addr_t dequeue = ring->dequeue; bool ccs = ring->ccs; /* hack to bundle together the two/three TDs that make a setup transfer */ bool control_td_set = 0; while (1) { TRBType type; pci_dma_read(&xhci->pci_dev, dequeue, &trb, TRB_SIZE); le64_to_cpus(&trb.parameter); le32_to_cpus(&trb.status); le32_to_cpus(&trb.control); if ((trb.control & TRB_C) != ccs) { return -length; } type = TRB_TYPE(trb); if (type == TR_LINK) { dequeue = xhci_mask64(trb.parameter); if (trb.control & TRB_LK_TC) { ccs = !ccs; } continue; } length += 1; dequeue += TRB_SIZE; if (type == TR_SETUP) { control_td_set = 1; } else if (type == TR_STATUS) { control_td_set = 0; } if (!control_td_set && !(trb.control & TRB_TR_CH)) { return length; } } } static void xhci_er_reset(XHCIState *xhci, int v) { XHCIInterrupter *intr = &xhci->intr[v]; XHCIEvRingSeg seg; /* cache the (sole) event ring segment location */ if (intr->erstsz != 1) { fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", intr->erstsz); xhci_die(xhci); return; } dma_addr_t erstba = xhci_addr64(intr->erstba_low, intr->erstba_high); pci_dma_read(&xhci->pci_dev, erstba, &seg, sizeof(seg)); le32_to_cpus(&seg.addr_low); le32_to_cpus(&seg.addr_high); le32_to_cpus(&seg.size); if (seg.size < 16 || seg.size > 4096) { fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size); xhci_die(xhci); return; } intr->er_start = xhci_addr64(seg.addr_low, seg.addr_high); intr->er_size = seg.size; intr->er_ep_idx = 0; intr->er_pcs = 1; intr->er_full = 0; DPRINTF("xhci: event ring[%d]:" DMA_ADDR_FMT " [%d]\n", v, intr->er_start, intr->er_size); } static void xhci_run(XHCIState *xhci) { trace_usb_xhci_run(); xhci->usbsts &= ~USBSTS_HCH; xhci->mfindex_start = qemu_get_clock_ns(vm_clock); } static void xhci_stop(XHCIState *xhci) { trace_usb_xhci_stop(); xhci->usbsts |= USBSTS_HCH; xhci->crcr_low &= ~CRCR_CRR; } static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx, uint32_t state) { uint32_t ctx[5]; if (epctx->state == state) { return; } pci_dma_read(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx)); ctx[0] &= ~EP_STATE_MASK; ctx[0] |= state; ctx[2] = epctx->ring.dequeue | epctx->ring.ccs; ctx[3] = (epctx->ring.dequeue >> 16) >> 16; DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n", epctx->pctx, state, ctx[3], ctx[2]); pci_dma_write(&xhci->pci_dev, epctx->pctx, ctx, sizeof(ctx)); epctx->state = state; } static void xhci_ep_kick_timer(void *opaque) { XHCIEPContext *epctx = opaque; xhci_kick_ep(epctx->xhci, epctx->slotid, epctx->epid); } static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid, dma_addr_t pctx, uint32_t *ctx) { XHCISlot *slot; XHCIEPContext *epctx; dma_addr_t dequeue; int i; trace_usb_xhci_ep_enable(slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); slot = &xhci->slots[slotid-1]; if (slot->eps[epid-1]) { fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid); return CC_TRB_ERROR; } epctx = g_malloc(sizeof(XHCIEPContext)); memset(epctx, 0, sizeof(XHCIEPContext)); epctx->xhci = xhci; epctx->slotid = slotid; epctx->epid = epid; slot->eps[epid-1] = epctx; dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]); xhci_ring_init(xhci, &epctx->ring, dequeue); epctx->ring.ccs = ctx[2] & 1; epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK; DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type); epctx->pctx = pctx; epctx->max_psize = ctx[1]>>16; epctx->max_psize *= 1+((ctx[1]>>8)&0xff); DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n", epid/2, epid%2, epctx->max_psize); for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) { usb_packet_init(&epctx->transfers[i].packet); } epctx->interval = 1 << (ctx[0] >> 16) & 0xff; epctx->mfindex_last = 0; epctx->kick_timer = qemu_new_timer_ns(vm_clock, xhci_ep_kick_timer, epctx); epctx->state = EP_RUNNING; ctx[0] &= ~EP_STATE_MASK; ctx[0] |= EP_RUNNING; return CC_SUCCESS; } static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; int i, xferi, killed = 0; assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { return 0; } epctx = slot->eps[epid-1]; xferi = epctx->next_xfer; for (i = 0; i < TD_QUEUE; i++) { XHCITransfer *t = &epctx->transfers[xferi]; if (t->running_async) { usb_cancel_packet(&t->packet); t->running_async = 0; t->cancelled = 1; DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i); killed++; } if (t->running_retry) { t->running_retry = 0; epctx->retry = NULL; qemu_del_timer(epctx->kick_timer); } if (t->trbs) { g_free(t->trbs); } t->trbs = NULL; t->trb_count = t->trb_alloced = 0; xferi = (xferi + 1) % TD_QUEUE; } return killed; } static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; trace_usb_xhci_ep_disable(slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid); return CC_SUCCESS; } xhci_ep_nuke_xfers(xhci, slotid, epid); epctx = slot->eps[epid-1]; xhci_set_ep_state(xhci, epctx, EP_DISABLED); qemu_free_timer(epctx->kick_timer); g_free(epctx); slot->eps[epid-1] = NULL; return CC_SUCCESS; } static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; trace_usb_xhci_ep_stop(slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, " "data might be lost\n"); } epctx = slot->eps[epid-1]; xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; USBDevice *dev; trace_usb_xhci_ep_reset(slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_HALTED) { fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n", epid, epctx->state); return CC_CONTEXT_STATE_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, " "data might be lost\n"); } uint8_t ep = epid>>1; if (epid & 1) { ep |= 0x80; } dev = xhci->ports[xhci->slots[slotid-1].port-1].uport->dev; if (!dev) { return CC_USB_TRANSACTION_ERROR; } xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid, unsigned int epid, uint64_t pdequeue) { XHCISlot *slot; XHCIEPContext *epctx; dma_addr_t dequeue; assert(slotid >= 1 && slotid <= MAXSLOTS); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } trace_usb_xhci_ep_set_dequeue(slotid, epid, pdequeue); dequeue = xhci_mask64(pdequeue); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_STOPPED) { fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid); return CC_CONTEXT_STATE_ERROR; } xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF); epctx->ring.ccs = dequeue & 1; xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static int xhci_xfer_map(XHCITransfer *xfer) { int in_xfer = (xfer->packet.pid == USB_TOKEN_IN); XHCIState *xhci = xfer->xhci; int i; pci_dma_sglist_init(&xfer->sgl, &xhci->pci_dev, xfer->trb_count); for (i = 0; i < xfer->trb_count; i++) { XHCITRB *trb = &xfer->trbs[i]; dma_addr_t addr; unsigned int chunk = 0; switch (TRB_TYPE(*trb)) { case TR_DATA: if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) { fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n"); goto err; } /* fallthrough */ case TR_NORMAL: case TR_ISOCH: addr = xhci_mask64(trb->parameter); chunk = trb->status & 0x1ffff; if (trb->control & TRB_TR_IDT) { if (chunk > 8 || in_xfer) { fprintf(stderr, "xhci: invalid immediate data TRB\n"); goto err; } qemu_sglist_add(&xfer->sgl, trb->addr, chunk); } else { qemu_sglist_add(&xfer->sgl, addr, chunk); } break; } } usb_packet_map(&xfer->packet, &xfer->sgl); return 0; err: qemu_sglist_destroy(&xfer->sgl); xhci_die(xhci); return -1; } static void xhci_xfer_unmap(XHCITransfer *xfer) { usb_packet_unmap(&xfer->packet, &xfer->sgl); qemu_sglist_destroy(&xfer->sgl); } static void xhci_xfer_report(XHCITransfer *xfer) { uint32_t edtla = 0; unsigned int left; bool reported = 0; bool shortpkt = 0; XHCIEvent event = {ER_TRANSFER, CC_SUCCESS}; XHCIState *xhci = xfer->xhci; int i; left = xfer->packet.result < 0 ? 0 : xfer->packet.result; for (i = 0; i < xfer->trb_count; i++) { XHCITRB *trb = &xfer->trbs[i]; unsigned int chunk = 0; switch (TRB_TYPE(*trb)) { case TR_DATA: case TR_NORMAL: case TR_ISOCH: chunk = trb->status & 0x1ffff; if (chunk > left) { chunk = left; if (xfer->status == CC_SUCCESS) { shortpkt = 1; } } left -= chunk; edtla += chunk; break; case TR_STATUS: reported = 0; shortpkt = 0; break; } if (!reported && ((trb->control & TRB_TR_IOC) || (shortpkt && (trb->control & TRB_TR_ISP)) || (xfer->status != CC_SUCCESS))) { event.slotid = xfer->slotid; event.epid = xfer->epid; event.length = (trb->status & 0x1ffff) - chunk; event.flags = 0; event.ptr = trb->addr; if (xfer->status == CC_SUCCESS) { event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS; } else { event.ccode = xfer->status; } if (TRB_TYPE(*trb) == TR_EVDATA) { event.ptr = trb->parameter; event.flags |= TRB_EV_ED; event.length = edtla & 0xffffff; DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length); edtla = 0; } xhci_event(xhci, &event, TRB_INTR(*trb)); reported = 1; if (xfer->status != CC_SUCCESS) { return; } } } } static void xhci_stall_ep(XHCITransfer *xfer) { XHCIState *xhci = xfer->xhci; XHCISlot *slot = &xhci->slots[xfer->slotid-1]; XHCIEPContext *epctx = slot->eps[xfer->epid-1]; epctx->ring.dequeue = xfer->trbs[0].addr; epctx->ring.ccs = xfer->trbs[0].ccs; xhci_set_ep_state(xhci, epctx, EP_HALTED); DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid); DPRINTF("xhci: will continue at "DMA_ADDR_FMT"\n", epctx->ring.dequeue); } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx); static USBDevice *xhci_find_device(XHCIPort *port, uint8_t addr) { if (!(port->portsc & PORTSC_PED)) { return NULL; } return usb_find_device(port->uport, addr); } static int xhci_setup_packet(XHCITransfer *xfer) { XHCIState *xhci = xfer->xhci; XHCIPort *port; USBDevice *dev; USBEndpoint *ep; int dir; dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT; if (xfer->packet.ep) { ep = xfer->packet.ep; dev = ep->dev; } else { port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1]; dev = xhci_find_device(port, xhci->slots[xfer->slotid-1].devaddr); if (!dev) { fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid, xhci->slots[xfer->slotid-1].port); return -1; } ep = usb_ep_get(dev, dir, xfer->epid >> 1); } usb_packet_setup(&xfer->packet, dir, ep, xfer->trbs[0].addr); xhci_xfer_map(xfer); DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n", xfer->packet.pid, dev->addr, ep->nr); return 0; } static int xhci_complete_packet(XHCITransfer *xfer, int ret) { if (ret == USB_RET_ASYNC) { trace_usb_xhci_xfer_async(xfer); xfer->running_async = 1; xfer->running_retry = 0; xfer->complete = 0; xfer->cancelled = 0; return 0; } else if (ret == USB_RET_NAK) { trace_usb_xhci_xfer_nak(xfer); xfer->running_async = 0; xfer->running_retry = 1; xfer->complete = 0; xfer->cancelled = 0; return 0; } else { xfer->running_async = 0; xfer->running_retry = 0; xfer->complete = 1; xhci_xfer_unmap(xfer); } if (ret >= 0) { trace_usb_xhci_xfer_success(xfer, ret); xfer->status = CC_SUCCESS; xhci_xfer_report(xfer); return 0; } /* error */ trace_usb_xhci_xfer_error(xfer, ret); switch (ret) { case USB_RET_NODEV: xfer->status = CC_USB_TRANSACTION_ERROR; xhci_xfer_report(xfer); xhci_stall_ep(xfer); break; case USB_RET_STALL: xfer->status = CC_STALL_ERROR; xhci_xfer_report(xfer); xhci_stall_ep(xfer); break; default: fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret); FIXME(); } return 0; } static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer) { XHCITRB *trb_setup, *trb_status; uint8_t bmRequestType; int ret; trb_setup = &xfer->trbs[0]; trb_status = &xfer->trbs[xfer->trb_count-1]; trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid); /* at most one Event Data TRB allowed after STATUS */ if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) { trb_status--; } /* do some sanity checks */ if (TRB_TYPE(*trb_setup) != TR_SETUP) { fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n", TRB_TYPE(*trb_setup)); return -1; } if (TRB_TYPE(*trb_status) != TR_STATUS) { fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n", TRB_TYPE(*trb_status)); return -1; } if (!(trb_setup->control & TRB_TR_IDT)) { fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n"); return -1; } if ((trb_setup->status & 0x1ffff) != 8) { fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n", (trb_setup->status & 0x1ffff)); return -1; } bmRequestType = trb_setup->parameter; xfer->in_xfer = bmRequestType & USB_DIR_IN; xfer->iso_xfer = false; if (xhci_setup_packet(xfer) < 0) { return -1; } xfer->packet.parameter = trb_setup->parameter; ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); xhci_complete_packet(xfer, ret); if (!xfer->running_async && !xfer->running_retry) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid); } return 0; } static void xhci_calc_iso_kick(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx, uint64_t mfindex) { if (xfer->trbs[0].control & TRB_TR_SIA) { uint64_t asap = ((mfindex + epctx->interval - 1) & ~(epctx->interval-1)); if (asap >= epctx->mfindex_last && asap <= epctx->mfindex_last + epctx->interval * 4) { xfer->mfindex_kick = epctx->mfindex_last + epctx->interval; } else { xfer->mfindex_kick = asap; } } else { xfer->mfindex_kick = (xfer->trbs[0].control >> TRB_TR_FRAMEID_SHIFT) & TRB_TR_FRAMEID_MASK; xfer->mfindex_kick |= mfindex & ~0x3fff; if (xfer->mfindex_kick < mfindex) { xfer->mfindex_kick += 0x4000; } } } static void xhci_check_iso_kick(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx, uint64_t mfindex) { if (xfer->mfindex_kick > mfindex) { qemu_mod_timer(epctx->kick_timer, qemu_get_clock_ns(vm_clock) + (xfer->mfindex_kick - mfindex) * 125000); xfer->running_retry = 1; } else { epctx->mfindex_last = xfer->mfindex_kick; qemu_del_timer(epctx->kick_timer); xfer->running_retry = 0; } } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { uint64_t mfindex; int ret; DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); xfer->in_xfer = epctx->type>>2; switch(epctx->type) { case ET_INTR_OUT: case ET_INTR_IN: case ET_BULK_OUT: case ET_BULK_IN: xfer->pkts = 0; xfer->iso_xfer = false; break; case ET_ISO_OUT: case ET_ISO_IN: xfer->pkts = 1; xfer->iso_xfer = true; mfindex = xhci_mfindex_get(xhci); xhci_calc_iso_kick(xhci, xfer, epctx, mfindex); xhci_check_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return -1; } break; default: fprintf(stderr, "xhci: unknown or unhandled EP " "(type %d, in %d, ep %02x)\n", epctx->type, xfer->in_xfer, xfer->epid); return -1; } if (xhci_setup_packet(xfer) < 0) { return -1; } ret = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); xhci_complete_packet(xfer, ret); if (!xfer->running_async && !xfer->running_retry) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid); } return 0; } static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid); return xhci_submit(xhci, xfer, epctx); } static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCIEPContext *epctx; uint64_t mfindex; int length; int i; trace_usb_xhci_ep_kick(slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); if (!xhci->slots[slotid-1].enabled) { fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid); return; } epctx = xhci->slots[slotid-1].eps[epid-1]; if (!epctx) { fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n", epid, slotid); return; } if (epctx->retry) { XHCITransfer *xfer = epctx->retry; int result; trace_usb_xhci_xfer_retry(xfer); assert(xfer->running_retry); if (xfer->iso_xfer) { /* retry delayed iso transfer */ mfindex = xhci_mfindex_get(xhci); xhci_check_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return; } if (xhci_setup_packet(xfer) < 0) { return; } result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); assert(result != USB_RET_NAK); xhci_complete_packet(xfer, result); } else { /* retry nak'ed transfer */ if (xhci_setup_packet(xfer) < 0) { return; } result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); if (result == USB_RET_NAK) { return; } xhci_complete_packet(xfer, result); } assert(!xfer->running_retry); epctx->retry = NULL; } if (epctx->state == EP_HALTED) { DPRINTF("xhci: ep halted, not running schedule\n"); return; } xhci_set_ep_state(xhci, epctx, EP_RUNNING); while (1) { XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer]; if (xfer->running_async || xfer->running_retry) { break; } length = xhci_ring_chain_length(xhci, &epctx->ring); if (length < 0) { break; } else if (length == 0) { break; } if (xfer->trbs && xfer->trb_alloced < length) { xfer->trb_count = 0; xfer->trb_alloced = 0; g_free(xfer->trbs); xfer->trbs = NULL; } if (!xfer->trbs) { xfer->trbs = g_malloc(sizeof(XHCITRB) * length); xfer->trb_alloced = length; } xfer->trb_count = length; for (i = 0; i < length; i++) { assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL)); } xfer->xhci = xhci; xfer->epid = epid; xfer->slotid = slotid; if (epid == 1) { if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; } else { fprintf(stderr, "xhci: error firing CTL transfer\n"); } } else { if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; } else { if (!xfer->iso_xfer) { fprintf(stderr, "xhci: error firing data transfer\n"); } } } if (epctx->state == EP_HALTED) { break; } if (xfer->running_retry) { DPRINTF("xhci: xfer nacked, stopping schedule\n"); epctx->retry = xfer; break; } } } static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid) { trace_usb_xhci_slot_enable(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); xhci->slots[slotid-1].enabled = 1; xhci->slots[slotid-1].port = 0; memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31); return CC_SUCCESS; } static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid) { int i; trace_usb_xhci_slot_disable(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); for (i = 1; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } xhci->slots[slotid-1].enabled = 0; return CC_SUCCESS; } static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool bsr) { XHCISlot *slot; USBDevice *dev; dma_addr_t ictx, octx, dcbaap; uint64_t poctx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t ep0_ctx[5]; unsigned int port; int i; TRBCCode res; trace_usb_xhci_slot_address(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high); pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx)); ictx = xhci_mask64(pictx); octx = xhci_mask64(le64_to_cpu(poctx)); DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } pci_dma_read(&xhci->pci_dev, ictx+32, slot_ctx, sizeof(slot_ctx)); pci_dma_read(&xhci->pci_dev, ictx+64, ep0_ctx, sizeof(ep0_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); port = (slot_ctx[1]>>16) & 0xFF; dev = xhci->ports[port-1].uport->dev; if (port < 1 || port > xhci->numports) { fprintf(stderr, "xhci: bad port %d\n", port); return CC_TRB_ERROR; } else if (!dev) { fprintf(stderr, "xhci: port %d not connected\n", port); return CC_USB_TRANSACTION_ERROR; } for (i = 0; i < MAXSLOTS; i++) { if (xhci->slots[i].port == port) { fprintf(stderr, "xhci: port %d already assigned to slot %d\n", port, i+1); return CC_TRB_ERROR; } } slot = &xhci->slots[slotid-1]; slot->port = port; slot->ctx = octx; if (bsr) { slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT; } else { slot->devaddr = xhci->devaddr++; slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr; DPRINTF("xhci: device address is %d\n", slot->devaddr); usb_device_handle_control(dev, NULL, DeviceOutRequest | USB_REQ_SET_ADDRESS, slot->devaddr, 0, 0, NULL); } res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx); DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); return res; } static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool dc) { dma_addr_t ictx, octx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t islot_ctx[4]; uint32_t ep_ctx[5]; int i; TRBCCode res; trace_usb_xhci_slot_configure(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); if (dc) { for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx)); pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) { fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]); return CC_CONTEXT_STATE_ERROR; } for (i = 2; i <= 31; i++) { if (ictl_ctx[0] & (1<pci_dev, ictx+32+(32*i), ep_ctx, sizeof(ep_ctx)); DPRINTF("xhci: input ep%d.%d context: %08x %08x %08x %08x %08x\n", i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2], ep_ctx[3], ep_ctx[4]); xhci_disable_ep(xhci, slotid, i); res = xhci_enable_ep(xhci, slotid, i, octx+(32*i), ep_ctx); if (res != CC_SUCCESS) { return res; } DPRINTF("xhci: output ep%d.%d context: %08x %08x %08x %08x %08x\n", i/2, i%2, ep_ctx[0], ep_ctx[1], ep_ctx[2], ep_ctx[3], ep_ctx[4]); pci_dma_write(&xhci->pci_dev, octx+(32*i), ep_ctx, sizeof(ep_ctx)); } } slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_CONFIGURED << SLOT_STATE_SHIFT; slot_ctx[0] &= ~(SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT); slot_ctx[0] |= islot_ctx[0] & (SLOT_CONTEXT_ENTRIES_MASK << SLOT_CONTEXT_ENTRIES_SHIFT); DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } static TRBCCode xhci_evaluate_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx) { dma_addr_t ictx, octx; uint32_t ictl_ctx[2]; uint32_t iep0_ctx[5]; uint32_t ep0_ctx[5]; uint32_t islot_ctx[4]; uint32_t slot_ctx[4]; trace_usb_xhci_slot_evaluate(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); pci_dma_read(&xhci->pci_dev, ictx, ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } if (ictl_ctx[1] & 0x1) { pci_dma_read(&xhci->pci_dev, ictx+32, islot_ctx, sizeof(islot_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]); pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[1] &= ~0xFFFF; /* max exit latency */ slot_ctx[1] |= islot_ctx[1] & 0xFFFF; slot_ctx[2] &= ~0xFF00000; /* interrupter target */ slot_ctx[2] |= islot_ctx[2] & 0xFF000000; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); } if (ictl_ctx[1] & 0x2) { pci_dma_read(&xhci->pci_dev, ictx+64, iep0_ctx, sizeof(iep0_ctx)); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", iep0_ctx[0], iep0_ctx[1], iep0_ctx[2], iep0_ctx[3], iep0_ctx[4]); pci_dma_read(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/ ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000; DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); pci_dma_write(&xhci->pci_dev, octx+32, ep0_ctx, sizeof(ep0_ctx)); } return CC_SUCCESS; } static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid) { uint32_t slot_ctx[4]; dma_addr_t octx; int i; trace_usb_xhci_slot_reset(slotid); assert(slotid >= 1 && slotid <= MAXSLOTS); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } pci_dma_read(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); pci_dma_write(&xhci->pci_dev, octx, slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb) { unsigned int slotid; slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK; if (slotid < 1 || slotid > MAXSLOTS) { fprintf(stderr, "xhci: bad slot id %d\n", slotid); event->ccode = CC_TRB_ERROR; return 0; } else if (!xhci->slots[slotid-1].enabled) { fprintf(stderr, "xhci: slot id %d not enabled\n", slotid); event->ccode = CC_SLOT_NOT_ENABLED_ERROR; return 0; } return slotid; } static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx) { dma_addr_t ctx; uint8_t bw_ctx[xhci->numports+1]; DPRINTF("xhci_get_port_bandwidth()\n"); ctx = xhci_mask64(pctx); DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx); /* TODO: actually implement real values here */ bw_ctx[0] = 0; memset(&bw_ctx[1], 80, xhci->numports); /* 80% */ pci_dma_write(&xhci->pci_dev, ctx, bw_ctx, sizeof(bw_ctx)); return CC_SUCCESS; } static uint32_t rotl(uint32_t v, unsigned count) { count &= 31; return (v << count) | (v >> (32 - count)); } static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo) { uint32_t val; val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F)); val += rotl(lo + 0x49434878, hi & 0x1F); val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F); return ~val; } static void xhci_via_challenge(XHCIState *xhci, uint64_t addr) { uint32_t buf[8]; uint32_t obuf[8]; dma_addr_t paddr = xhci_mask64(addr); pci_dma_read(&xhci->pci_dev, paddr, &buf, 32); memcpy(obuf, buf, sizeof(obuf)); if ((buf[0] & 0xff) == 2) { obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3]; obuf[0] |= (buf[2] * buf[3]) & 0xff; obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3]; obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3]; obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3]; obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3]; obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3]; obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956; obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593; } pci_dma_write(&xhci->pci_dev, paddr, &obuf, 32); } static void xhci_process_commands(XHCIState *xhci) { XHCITRB trb; TRBType type; XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS}; dma_addr_t addr; unsigned int i, slotid = 0; DPRINTF("xhci_process_commands()\n"); if (!xhci_running(xhci)) { DPRINTF("xhci_process_commands() called while xHC stopped or paused\n"); return; } xhci->crcr_low |= CRCR_CRR; while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) { event.ptr = addr; switch (type) { case CR_ENABLE_SLOT: for (i = 0; i < MAXSLOTS; i++) { if (!xhci->slots[i].enabled) { break; } } if (i >= MAXSLOTS) { fprintf(stderr, "xhci: no device slots available\n"); event.ccode = CC_NO_SLOTS_ERROR; } else { slotid = i+1; event.ccode = xhci_enable_slot(xhci, slotid); } break; case CR_DISABLE_SLOT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_disable_slot(xhci, slotid); } break; case CR_ADDRESS_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_address_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_BSR); } break; case CR_CONFIGURE_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_DC); } break; case CR_EVALUATE_CONTEXT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter); } break; case CR_STOP_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_stop_ep(xhci, slotid, epid); } break; case CR_RESET_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_reset_ep(xhci, slotid, epid); } break; case CR_SET_TR_DEQUEUE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid, trb.parameter); } break; case CR_RESET_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_reset_slot(xhci, slotid); } break; case CR_GET_PORT_BANDWIDTH: event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter); break; case CR_VENDOR_VIA_CHALLENGE_RESPONSE: xhci_via_challenge(xhci, trb.parameter); break; case CR_VENDOR_NEC_FIRMWARE_REVISION: event.type = 48; /* NEC reply */ event.length = 0x3025; break; case CR_VENDOR_NEC_CHALLENGE_RESPONSE: { uint32_t chi = trb.parameter >> 32; uint32_t clo = trb.parameter; uint32_t val = xhci_nec_challenge(chi, clo); event.length = val & 0xFFFF; event.epid = val >> 16; slotid = val >> 24; event.type = 48; /* NEC reply */ } break; default: fprintf(stderr, "xhci: unimplemented command %d\n", type); event.ccode = CC_TRB_ERROR; break; } event.slotid = slotid; xhci_event(xhci, &event, 0); } } static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach) { port->portsc = PORTSC_PP; if (port->uport->dev && port->uport->dev->attached && !is_detach && (1 << port->uport->dev->speed) & port->speedmask) { port->portsc |= PORTSC_CCS; switch (port->uport->dev->speed) { case USB_SPEED_LOW: port->portsc |= PORTSC_SPEED_LOW; break; case USB_SPEED_FULL: port->portsc |= PORTSC_SPEED_FULL; break; case USB_SPEED_HIGH: port->portsc |= PORTSC_SPEED_HIGH; break; case USB_SPEED_SUPER: port->portsc |= PORTSC_SPEED_SUPER; break; } } if (xhci_running(xhci)) { port->portsc |= PORTSC_CSC; XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, port->portnr << 24}; xhci_event(xhci, &ev, 0); DPRINTF("xhci: port change event for port %d\n", port->portnr); } } static void xhci_reset(DeviceState *dev) { XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev.qdev, dev); int i; trace_usb_xhci_reset(); if (!(xhci->usbsts & USBSTS_HCH)) { fprintf(stderr, "xhci: reset while running!\n"); } xhci->usbcmd = 0; xhci->usbsts = USBSTS_HCH; xhci->dnctrl = 0; xhci->crcr_low = 0; xhci->crcr_high = 0; xhci->dcbaap_low = 0; xhci->dcbaap_high = 0; xhci->config = 0; xhci->devaddr = 2; for (i = 0; i < MAXSLOTS; i++) { xhci_disable_slot(xhci, i+1); } for (i = 0; i < xhci->numports; i++) { xhci_update_port(xhci, xhci->ports + i, 0); } for (i = 0; i < MAXINTRS; i++) { xhci->intr[i].iman = 0; xhci->intr[i].imod = 0; xhci->intr[i].erstsz = 0; xhci->intr[i].erstba_low = 0; xhci->intr[i].erstba_high = 0; xhci->intr[i].erdp_low = 0; xhci->intr[i].erdp_high = 0; xhci->intr[i].msix_used = 0; xhci->intr[i].er_ep_idx = 0; xhci->intr[i].er_pcs = 1; xhci->intr[i].er_full = 0; xhci->intr[i].ev_buffer_put = 0; xhci->intr[i].ev_buffer_get = 0; } xhci->mfindex_start = qemu_get_clock_ns(vm_clock); xhci_mfwrap_update(xhci); } static uint64_t xhci_cap_read(void *ptr, target_phys_addr_t reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret; switch (reg) { case 0x00: /* HCIVERSION, CAPLENGTH */ ret = 0x01000000 | LEN_CAP; break; case 0x04: /* HCSPARAMS 1 */ ret = ((xhci->numports_2+xhci->numports_3)<<24) | (MAXINTRS<<8) | MAXSLOTS; break; case 0x08: /* HCSPARAMS 2 */ ret = 0x0000000f; break; case 0x0c: /* HCSPARAMS 3 */ ret = 0x00000000; break; case 0x10: /* HCCPARAMS */ if (sizeof(dma_addr_t) == 4) { ret = 0x00081000; } else { ret = 0x00081001; } break; case 0x14: /* DBOFF */ ret = OFF_DOORBELL; break; case 0x18: /* RTSOFF */ ret = OFF_RUNTIME; break; /* extended capabilities */ case 0x20: /* Supported Protocol:00 */ ret = 0x02000402; /* USB 2.0 */ break; case 0x24: /* Supported Protocol:04 */ ret = 0x20425455; /* "USB " */ break; case 0x28: /* Supported Protocol:08 */ ret = 0x00000001 | (xhci->numports_2<<8); break; case 0x2c: /* Supported Protocol:0c */ ret = 0x00000000; /* reserved */ break; case 0x30: /* Supported Protocol:00 */ ret = 0x03000002; /* USB 3.0 */ break; case 0x34: /* Supported Protocol:04 */ ret = 0x20425455; /* "USB " */ break; case 0x38: /* Supported Protocol:08 */ ret = 0x00000000 | (xhci->numports_2+1) | (xhci->numports_3<<8); break; case 0x3c: /* Supported Protocol:0c */ ret = 0x00000000; /* reserved */ break; default: fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", (int)reg); ret = 0; } trace_usb_xhci_cap_read(reg, ret); return ret; } static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg) { uint32_t port = reg >> 4; uint32_t ret; if (port >= xhci->numports) { fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port); ret = 0; goto out; } switch (reg & 0xf) { case 0x00: /* PORTSC */ ret = xhci->ports[port].portsc; break; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ ret = 0; break; case 0x0c: /* reserved */ default: fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n", port, reg); ret = 0; } out: trace_usb_xhci_port_read(port, reg & 0x0f, ret); return ret; } static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val) { uint32_t port = reg >> 4; uint32_t portsc; trace_usb_xhci_port_write(port, reg & 0x0f, val); if (port >= xhci->numports) { fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port); return; } switch (reg & 0xf) { case 0x00: /* PORTSC */ portsc = xhci->ports[port].portsc; /* write-1-to-clear bits*/ portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC| PORTSC_PRC|PORTSC_PLC|PORTSC_CEC)); if (val & PORTSC_LWS) { /* overwrite PLS only when LWS=1 */ portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); } /* read/write bits */ portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE); portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE)); /* write-1-to-start bits */ if (val & PORTSC_PR) { DPRINTF("xhci: port %d reset\n", port); usb_device_reset(xhci->ports[port].uport->dev); portsc |= PORTSC_PRC | PORTSC_PED; } xhci->ports[port].portsc = portsc; break; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ default: fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n", port, reg); } } static uint64_t xhci_oper_read(void *ptr, target_phys_addr_t reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret; if (reg >= 0x400) { return xhci_port_read(xhci, reg - 0x400); } switch (reg) { case 0x00: /* USBCMD */ ret = xhci->usbcmd; break; case 0x04: /* USBSTS */ ret = xhci->usbsts; break; case 0x08: /* PAGESIZE */ ret = 1; /* 4KiB */ break; case 0x14: /* DNCTRL */ ret = xhci->dnctrl; break; case 0x18: /* CRCR low */ ret = xhci->crcr_low & ~0xe; break; case 0x1c: /* CRCR high */ ret = xhci->crcr_high; break; case 0x30: /* DCBAAP low */ ret = xhci->dcbaap_low; break; case 0x34: /* DCBAAP high */ ret = xhci->dcbaap_high; break; case 0x38: /* CONFIG */ ret = xhci->config; break; default: fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", (int)reg); ret = 0; } trace_usb_xhci_oper_read(reg, ret); return ret; } static void xhci_oper_write(void *ptr, target_phys_addr_t reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; if (reg >= 0x400) { xhci_port_write(xhci, reg - 0x400, val); return; } trace_usb_xhci_oper_write(reg, val); switch (reg) { case 0x00: /* USBCMD */ if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) { xhci_run(xhci); } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) { xhci_stop(xhci); } xhci->usbcmd = val & 0xc0f; xhci_mfwrap_update(xhci); if (val & USBCMD_HCRST) { xhci_reset(&xhci->pci_dev.qdev); } xhci_intx_update(xhci); break; case 0x04: /* USBSTS */ /* these bits are write-1-to-clear */ xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE)); xhci_intx_update(xhci); break; case 0x14: /* DNCTRL */ xhci->dnctrl = val & 0xffff; break; case 0x18: /* CRCR low */ xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR); break; case 0x1c: /* CRCR high */ xhci->crcr_high = val; if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) { XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED}; xhci->crcr_low &= ~CRCR_CRR; xhci_event(xhci, &event, 0); DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low); } else { dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val); xhci_ring_init(xhci, &xhci->cmd_ring, base); } xhci->crcr_low &= ~(CRCR_CA | CRCR_CS); break; case 0x30: /* DCBAAP low */ xhci->dcbaap_low = val & 0xffffffc0; break; case 0x34: /* DCBAAP high */ xhci->dcbaap_high = val; break; case 0x38: /* CONFIG */ xhci->config = val & 0xff; break; default: fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg); } } static uint64_t xhci_runtime_read(void *ptr, target_phys_addr_t reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret = 0; if (reg < 0x20) { switch (reg) { case 0x00: /* MFINDEX */ ret = xhci_mfindex_get(xhci) & 0x3fff; break; default: fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", (int)reg); break; } } else { int v = (reg - 0x20) / 0x20; XHCIInterrupter *intr = &xhci->intr[v]; switch (reg & 0x1f) { case 0x00: /* IMAN */ ret = intr->iman; break; case 0x04: /* IMOD */ ret = intr->imod; break; case 0x08: /* ERSTSZ */ ret = intr->erstsz; break; case 0x10: /* ERSTBA low */ ret = intr->erstba_low; break; case 0x14: /* ERSTBA high */ ret = intr->erstba_high; break; case 0x18: /* ERDP low */ ret = intr->erdp_low; break; case 0x1c: /* ERDP high */ ret = intr->erdp_high; break; } } trace_usb_xhci_runtime_read(reg, ret); return ret; } static void xhci_runtime_write(void *ptr, target_phys_addr_t reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; int v = (reg - 0x20) / 0x20; XHCIInterrupter *intr = &xhci->intr[v]; trace_usb_xhci_runtime_write(reg, val); if (reg < 0x20) { fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg); return; } switch (reg & 0x1f) { case 0x00: /* IMAN */ if (val & IMAN_IP) { intr->iman &= ~IMAN_IP; } intr->iman &= ~IMAN_IE; intr->iman |= val & IMAN_IE; if (v == 0) { xhci_intx_update(xhci); } xhci_msix_update(xhci, v); break; case 0x04: /* IMOD */ intr->imod = val; break; case 0x08: /* ERSTSZ */ intr->erstsz = val & 0xffff; break; case 0x10: /* ERSTBA low */ /* XXX NEC driver bug: it doesn't align this to 64 bytes intr->erstba_low = val & 0xffffffc0; */ intr->erstba_low = val & 0xfffffff0; break; case 0x14: /* ERSTBA high */ intr->erstba_high = val; xhci_er_reset(xhci, v); break; case 0x18: /* ERDP low */ if (val & ERDP_EHB) { intr->erdp_low &= ~ERDP_EHB; } intr->erdp_low = (val & ~ERDP_EHB) | (intr->erdp_low & ERDP_EHB); break; case 0x1c: /* ERDP high */ intr->erdp_high = val; xhci_events_update(xhci, v); break; default: fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", (int)reg); } } static uint64_t xhci_doorbell_read(void *ptr, target_phys_addr_t reg, unsigned size) { /* doorbells always read as 0 */ trace_usb_xhci_doorbell_read(reg, 0); return 0; } static void xhci_doorbell_write(void *ptr, target_phys_addr_t reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; trace_usb_xhci_doorbell_write(reg, val); if (!xhci_running(xhci)) { fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n"); return; } reg >>= 2; if (reg == 0) { if (val == 0) { xhci_process_commands(xhci); } else { fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", (uint32_t)val); } } else { if (reg > MAXSLOTS) { fprintf(stderr, "xhci: bad doorbell %d\n", (int)reg); } else if (val > 31) { fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", (int)reg, (uint32_t)val); } else { xhci_kick_ep(xhci, reg, val); } } } static const MemoryRegionOps xhci_cap_ops = { .read = xhci_cap_read, .valid.min_access_size = 1, .valid.max_access_size = 4, .impl.min_access_size = 4, .impl.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_oper_ops = { .read = xhci_oper_read, .write = xhci_oper_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_runtime_ops = { .read = xhci_runtime_read, .write = xhci_runtime_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_doorbell_ops = { .read = xhci_doorbell_read, .write = xhci_doorbell_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void xhci_attach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); xhci_update_port(xhci, port, 0); } static void xhci_detach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); xhci_update_port(xhci, port, 1); } static void xhci_wakeup(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, port->portnr << 24}; uint32_t pls; pls = (port->portsc >> PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK; if (pls != 3) { return; } port->portsc |= 0xf << PORTSC_PLS_SHIFT; if (port->portsc & PORTSC_PLC) { return; } port->portsc |= PORTSC_PLC; xhci_event(xhci, &ev, 0); } static void xhci_complete(USBPort *port, USBPacket *packet) { XHCITransfer *xfer = container_of(packet, XHCITransfer, packet); xhci_complete_packet(xfer, packet->result); xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid); } static void xhci_child_detach(USBPort *port, USBDevice *child) { FIXME(); } static USBPortOps xhci_port_ops = { .attach = xhci_attach, .detach = xhci_detach, .wakeup = xhci_wakeup, .complete = xhci_complete, .child_detach = xhci_child_detach, }; static int xhci_find_slotid(XHCIState *xhci, USBDevice *dev) { XHCISlot *slot; int slotid; for (slotid = 1; slotid <= MAXSLOTS; slotid++) { slot = &xhci->slots[slotid-1]; if (slot->devaddr == dev->addr) { return slotid; } } return 0; } static int xhci_find_epid(USBEndpoint *ep) { if (ep->nr == 0) { return 1; } if (ep->pid == USB_TOKEN_IN) { return ep->nr * 2 + 1; } else { return ep->nr * 2; } } static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep) { XHCIState *xhci = container_of(bus, XHCIState, bus); int slotid; DPRINTF("%s\n", __func__); slotid = xhci_find_slotid(xhci, ep->dev); if (slotid == 0 || !xhci->slots[slotid-1].enabled) { DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr); return; } xhci_kick_ep(xhci, slotid, xhci_find_epid(ep)); } static USBBusOps xhci_bus_ops = { .wakeup_endpoint = xhci_wakeup_endpoint, }; static void usb_xhci_init(XHCIState *xhci, DeviceState *dev) { XHCIPort *port; int i, usbports, speedmask; xhci->usbsts = USBSTS_HCH; if (xhci->numports_2 > MAXPORTS_2) { xhci->numports_2 = MAXPORTS_2; } if (xhci->numports_3 > MAXPORTS_3) { xhci->numports_3 = MAXPORTS_3; } usbports = MAX(xhci->numports_2, xhci->numports_3); xhci->numports = xhci->numports_2 + xhci->numports_3; usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev); for (i = 0; i < usbports; i++) { speedmask = 0; if (i < xhci->numports_2) { port = &xhci->ports[i]; port->portnr = i + 1; port->uport = &xhci->uports[i]; port->speedmask = USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH; speedmask |= port->speedmask; } if (i < xhci->numports_3) { port = &xhci->ports[i + xhci->numports_2]; port->portnr = i + 1 + xhci->numports_2; port->uport = &xhci->uports[i]; port->speedmask = USB_SPEED_MASK_SUPER; speedmask |= port->speedmask; } usb_register_port(&xhci->bus, &xhci->uports[i], xhci, i, &xhci_port_ops, speedmask); } } static int usb_xhci_initfn(struct PCIDevice *dev) { int ret; XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev); xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */ xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */ xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10; xhci->pci_dev.config[0x60] = 0x30; /* release number */ usb_xhci_init(xhci, &dev->qdev); xhci->mfwrap_timer = qemu_new_timer_ns(vm_clock, xhci_mfwrap_timer, xhci); xhci->irq = xhci->pci_dev.irq[0]; memory_region_init(&xhci->mem, "xhci", LEN_REGS); memory_region_init_io(&xhci->mem_cap, &xhci_cap_ops, xhci, "capabilities", LEN_CAP); memory_region_init_io(&xhci->mem_oper, &xhci_oper_ops, xhci, "operational", 0x400 + 0x10 * xhci->numports); memory_region_init_io(&xhci->mem_runtime, &xhci_runtime_ops, xhci, "runtime", LEN_RUNTIME); memory_region_init_io(&xhci->mem_doorbell, &xhci_doorbell_ops, xhci, "doorbell", LEN_DOORBELL); memory_region_add_subregion(&xhci->mem, 0, &xhci->mem_cap); memory_region_add_subregion(&xhci->mem, OFF_OPER, &xhci->mem_oper); memory_region_add_subregion(&xhci->mem, OFF_RUNTIME, &xhci->mem_runtime); memory_region_add_subregion(&xhci->mem, OFF_DOORBELL, &xhci->mem_doorbell); pci_register_bar(&xhci->pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64, &xhci->mem); ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0); assert(ret >= 0); if (xhci->flags & (1 << XHCI_FLAG_USE_MSI)) { msi_init(&xhci->pci_dev, 0x70, MAXINTRS, true, false); } if (xhci->flags & (1 << XHCI_FLAG_USE_MSI_X)) { msix_init(&xhci->pci_dev, MAXINTRS, &xhci->mem, 0, OFF_MSIX_TABLE, &xhci->mem, 0, OFF_MSIX_PBA, 0x90); } return 0; } static const VMStateDescription vmstate_xhci = { .name = "xhci", .unmigratable = 1, }; static Property xhci_properties[] = { DEFINE_PROP_BIT("msi", XHCIState, flags, XHCI_FLAG_USE_MSI, true), DEFINE_PROP_BIT("msix", XHCIState, flags, XHCI_FLAG_USE_MSI_X, true), DEFINE_PROP_UINT32("p2", XHCIState, numports_2, 4), DEFINE_PROP_UINT32("p3", XHCIState, numports_3, 4), DEFINE_PROP_END_OF_LIST(), }; static void xhci_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_xhci; dc->props = xhci_properties; dc->reset = xhci_reset; k->init = usb_xhci_initfn; k->vendor_id = PCI_VENDOR_ID_NEC; k->device_id = PCI_DEVICE_ID_NEC_UPD720200; k->class_id = PCI_CLASS_SERIAL_USB; k->revision = 0x03; k->is_express = 1; } static TypeInfo xhci_info = { .name = "nec-usb-xhci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(XHCIState), .class_init = xhci_class_init, }; static void xhci_register_types(void) { type_register_static(&xhci_info); } type_init(xhci_register_types)